Effect of Annealing Temperature on Structure and Magnetic Properties of Zn0.94Mg0.01Mn0.05O Nanoparticles


Structural and magnetic characteristics of Zn0.94Mg0.01Mn0.05O (ZnMgMnO) nanoparticles synthesized by Sol-Gel preparation technique in a wide temperature range were reported. The influence of annealing temperature on the crystal structure of ZnMgMnO nanoparticles was figured out by X-ray diffraction technique (XRD). To optimize the annealing temperature and reveal the particle formation and size, Scanning Electron Microscope (SEM) imaging technique was performed. The required stoichiometry of the synthesized samples was obtained by an energy dispersive X-ray analysis technique (EDX). Quantum Design Vibrating Sample Magnetometer (QDVSM) tool was used for the magnetic characterizations of Zn0.94Mg0.01Mn0.05O composition. Magnetization measurements as a function of magnetic field (M-H) were performed in the magnetic field up to 10 kOe. Temperature dependence of magnetization measurements (M-T) was taken between 10 and 320 K temperature ranges.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Tosun, M., Ataoglu, S., Arda, L., Ozturk, O., Asikuzun, E., Akcan, D., Cakiroglu, O.: Structural and mechanical properties of ZnMgO nanoparticles. Mater. Sci. Eng. A. 590, 416–422 (2014)

    Article  Google Scholar 

  2. 2.

    Heiba, Z.K., Arda, L., Mohammed, M.B., Nasser, Y.M., Dogan, N.: Effect of annealing temperature on structural and magnetic properties of Zn0.94Co0.05Cu0.01O. J. Supercond. Nov. Magn. 26, 3487–3493 (2013)

    Article  Google Scholar 

  3. 3.

    Boyraz, C., Dogan, N., Arda, L.: Microstructure and magnetic behavior of (Mg/Ni) co-doped ZnO nanoparticles. Ceram. Int. 43, 15986–15991 (2017)

    Article  Google Scholar 

  4. 4.

    Asikuzun, E., Ozturk, O., Arda, L., Terzioglu, C.: Preparation, growth and characterization of nonvacuum Cu-doped ZnO thin films. J. Mol. Struct. 1165, 1–7 (2018)

    ADS  Article  Google Scholar 

  5. 5.

    Heiba, Z.K., Arda, L.: XRD, XPS, optical, and Raman investigations of structural changes of nanoCo-doped ZnO. J. Mol. Struct. 1022, 167–171 (2012)

    ADS  Article  Google Scholar 

  6. 6.

    Asikuzun, E., Ozturk, O., Arda, L., Akcan, D., Senol, S.D., Terzioglu, C.: Preparation, structural and micromechanical properties of (Al/Mg) co-doped ZnO nanoparticles by sol–gel process. J. Mater. Sci. Mater. Electron. 26, 8147 (2015)

    Article  Google Scholar 

  7. 7.

    Akcan, D., Gungor, A., Arda, L.: Structural and optical properties of Na-doped ZnO films. J. Mol. Struct. 1161, 299–305 (2018)

    ADS  Article  Google Scholar 

  8. 8.

    Kaya, S., Akcan, D., Ozturk, O., Arda, L.: Enhanced mechanical properties of yttrium doped ZnO nanoparticles as determined by instrumented indentation technique. Ceram. Int. 44, 10306 (2018)

    Article  Google Scholar 

  9. 9.

    Jantrasee, S., Pinitsoontorn, S., Moontragoon, P.: Optical and magnetic properties of doped ZnO: experimental and simulation. J. Optoelectron. Adv. Mater. 18, 1033 (2016)

    Google Scholar 

  10. 10.

    Boyraz, C., Yesilbas, B., Arda, L.: The temperature effect on structural and magnetic properties of Zn0.95Fe0.05O nanoparticles. J. Supercond. Nov. Magn. 30, 1691–1698 (2017)

    Article  Google Scholar 

  11. 11.

    Sikam, P., Moontragoon, P., Jumpatam, J., Pinitsoontorn, S., Thongbai, P., Kamwanna, T.: Structural, optical, electronic and magnetic properties of Fe-doped ZnO nanoparticles synthesized by combustion method and first-principle calculation. J. Supercond. Nov. Magn. 29, 3155–3166 (2016)

    Article  Google Scholar 

  12. 12.

    Goano, M., Bertazzi, F., Penna, M., Bellotti, E.: Electronic structure of wurtzite ZnO: nonlocal pseudopotential and ab initio calculations. J. Appl. Phys. 102, 083709 (2007)

    ADS  Article  Google Scholar 

  13. 13.

    Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, Y., Sakurai, H., Yoshida, Y., Yasuda, T., Segawa, Y.: MgxZn1−xOMgxZn1−xO as a II–VI widegap semiconductor alloy. Appl. Phys. Lett. 72, 2466–2468 (1998)

    ADS  Article  Google Scholar 

  14. 14.

    Moontragoon, P., Pinitsoontorn, S., Thongbai, P.: Mn-doped ZnO nanoparticles: preparation, characterization, and calculation of electronic and magnetic properties. Microelectron. Eng. 108, 158 (2013)

    Article  Google Scholar 

  15. 15.

    Bouzerar, G., Ziman, T.: Model for vacancy-induced d0 ferromagnetism in oxide compounds. Phys. Rev. Lett. 96, 207602 (2006)

    ADS  Article  Google Scholar 

  16. 16.

    Dorpe, P.V., Motsnyi, V.F., Nijboer, M., Goovaerts, E., Safarov, V.I., Das, J., Roy, W.V., Borghs, G., Boeck, J.D.: Highly efficient room temperature spin injection in a metal-insulator-semiconductor light-emitting diode. Jap. Soc. App. Phys. 42, L502–L504 (2003)

    ADS  Article  Google Scholar 

  17. 17.

    Korbecka, A., Majewski, J.A.: On the origin of room-temperature ferromagnetism in wide-gap semiconductors. J. Low Temp. Phys. 35, 53–57 (2009)

    Article  Google Scholar 

  18. 18.

    Karmakar, D., Mandal, S.K., Kadam, R.M., Paulose, P.L., Rajarajan, A.K., Nath, T.K., Das, A.K., Dasgupta, I., Das, G.P.: Ferromagnetism in Fe-doped ZnO nanocrystals: experiment and theory. Phys. Rev. B. 75, 144404 (2007)

    ADS  Article  Google Scholar 

  19. 19.

    Prater, J.T., Ramachandran, S., Tiwari, A., Narayan, J.: Effect of Al doping on the magnetic and electrical properties of Zn(Cu)O based diluted magnetic semiconductors. J. Electron. Mater. 35, 852–856 (2006)

    ADS  Article  Google Scholar 

  20. 20.

    Li, J.H., Shen, D.Z., Zhang, J.Y., Zhao, D.X., Li, B.S., Lu, Y.M., Liu, Y.C., Fan, X.W.: The effect of Mn2+ doping on structure and photoluminescence of ZnO Nano films synthesized by sol gel method. J. Lumin. 352, 122–123 (2007)

    Google Scholar 

  21. 21.

    Sharma, A., Gupta, K.V., Rao, F.J., Owens, R., Sharma, R., Ahuja, J.M.O., Guillen, B., Johansson, G.: Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater. 2, 673–677 (2003)

    ADS  Article  Google Scholar 

  22. 22.

    Kundaliya, D.C., Ogale, S.B., Lofland, S.E., Dhar, S., Metting, C.J., Shinde, S.R., Ma, Z., Varughese, B., Ramanujachary, K.V., Riba, L.S., Venkatesan, T.: On the origin of high-temperature ferromagnetism in the low-temperature processed Mn–Zn–O system. Nat. Mater. 3, 709–714 (2004)

    ADS  Article  Google Scholar 

  23. 23.

    Arda, L., Dogan, N., Boyraz, C.: Effects of annealing temperature on microstructure and magnetic properties of Ni0.05Zn0.95Fe2O4 nanoparticles. J. Supercond. Nov. Magn. 31, 365–371 (2018)

    Article  Google Scholar 

Download references


The presented work was supported by the Research Fund of Bahcesehir University (Project No. BAU-BAP.2018.02.16).

Author information



Corresponding author

Correspondence to A. Gungor.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guler, A., Tosun, M., Gungor, A. et al. Effect of Annealing Temperature on Structure and Magnetic Properties of Zn0.94Mg0.01Mn0.05O Nanoparticles. J Supercond Nov Magn 32, 2773–2780 (2019). https://doi.org/10.1007/s10948-019-5024-5

Download citation


  • ZnMgMnO nanoparticles
  • Magnetic properties
  • Sol-gel
  • Nanostructures