Effect of Annealing Temperature on Structure and Magnetic Properties of Zn0.94Mg0.01Mn0.05O Nanoparticles

  • A. Guler
  • M. Tosun
  • A. GungorEmail author
  • C. Boyraz
  • L. Arda
Original Paper


Structural and magnetic characteristics of Zn0.94Mg0.01Mn0.05O (ZnMgMnO) nanoparticles synthesized by Sol-Gel preparation technique in a wide temperature range were reported. The influence of annealing temperature on the crystal structure of ZnMgMnO nanoparticles was figured out by X-ray diffraction technique (XRD). To optimize the annealing temperature and reveal the particle formation and size, Scanning Electron Microscope (SEM) imaging technique was performed. The required stoichiometry of the synthesized samples was obtained by an energy dispersive X-ray analysis technique (EDX). Quantum Design Vibrating Sample Magnetometer (QDVSM) tool was used for the magnetic characterizations of Zn0.94Mg0.01Mn0.05O composition. Magnetization measurements as a function of magnetic field (M-H) were performed in the magnetic field up to 10 kOe. Temperature dependence of magnetization measurements (M-T) was taken between 10 and 320 K temperature ranges.


ZnMgMnO nanoparticles Magnetic properties Sol-gel Nanostructures 


Funding Information

The presented work was supported by the Research Fund of Bahcesehir University (Project No. BAU-BAP.2018.02.16).


  1. 1.
    Tosun, M., Ataoglu, S., Arda, L., Ozturk, O., Asikuzun, E., Akcan, D., Cakiroglu, O.: Structural and mechanical properties of ZnMgO nanoparticles. Mater. Sci. Eng. A. 590, 416–422 (2014)CrossRefGoogle Scholar
  2. 2.
    Heiba, Z.K., Arda, L., Mohammed, M.B., Nasser, Y.M., Dogan, N.: Effect of annealing temperature on structural and magnetic properties of Zn0.94Co0.05Cu0.01O. J. Supercond. Nov. Magn. 26, 3487–3493 (2013)CrossRefGoogle Scholar
  3. 3.
    Boyraz, C., Dogan, N., Arda, L.: Microstructure and magnetic behavior of (Mg/Ni) co-doped ZnO nanoparticles. Ceram. Int. 43, 15986–15991 (2017)CrossRefGoogle Scholar
  4. 4.
    Asikuzun, E., Ozturk, O., Arda, L., Terzioglu, C.: Preparation, growth and characterization of nonvacuum Cu-doped ZnO thin films. J. Mol. Struct. 1165, 1–7 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    Heiba, Z.K., Arda, L.: XRD, XPS, optical, and Raman investigations of structural changes of nanoCo-doped ZnO. J. Mol. Struct. 1022, 167–171 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Asikuzun, E., Ozturk, O., Arda, L., Akcan, D., Senol, S.D., Terzioglu, C.: Preparation, structural and micromechanical properties of (Al/Mg) co-doped ZnO nanoparticles by sol–gel process. J. Mater. Sci. Mater. Electron. 26, 8147 (2015)CrossRefGoogle Scholar
  7. 7.
    Akcan, D., Gungor, A., Arda, L.: Structural and optical properties of Na-doped ZnO films. J. Mol. Struct. 1161, 299–305 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    Kaya, S., Akcan, D., Ozturk, O., Arda, L.: Enhanced mechanical properties of yttrium doped ZnO nanoparticles as determined by instrumented indentation technique. Ceram. Int. 44, 10306 (2018)CrossRefGoogle Scholar
  9. 9.
    Jantrasee, S., Pinitsoontorn, S., Moontragoon, P.: Optical and magnetic properties of doped ZnO: experimental and simulation. J. Optoelectron. Adv. Mater. 18, 1033 (2016)Google Scholar
  10. 10.
    Boyraz, C., Yesilbas, B., Arda, L.: The temperature effect on structural and magnetic properties of Zn0.95Fe0.05O nanoparticles. J. Supercond. Nov. Magn. 30, 1691–1698 (2017)CrossRefGoogle Scholar
  11. 11.
    Sikam, P., Moontragoon, P., Jumpatam, J., Pinitsoontorn, S., Thongbai, P., Kamwanna, T.: Structural, optical, electronic and magnetic properties of Fe-doped ZnO nanoparticles synthesized by combustion method and first-principle calculation. J. Supercond. Nov. Magn. 29, 3155–3166 (2016)CrossRefGoogle Scholar
  12. 12.
    Goano, M., Bertazzi, F., Penna, M., Bellotti, E.: Electronic structure of wurtzite ZnO: nonlocal pseudopotential and ab initio calculations. J. Appl. Phys. 102, 083709 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, Y., Sakurai, H., Yoshida, Y., Yasuda, T., Segawa, Y.: MgxZn1−xOMgxZn1−xO as a II–VI widegap semiconductor alloy. Appl. Phys. Lett. 72, 2466–2468 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    Moontragoon, P., Pinitsoontorn, S., Thongbai, P.: Mn-doped ZnO nanoparticles: preparation, characterization, and calculation of electronic and magnetic properties. Microelectron. Eng. 108, 158 (2013)CrossRefGoogle Scholar
  15. 15.
    Bouzerar, G., Ziman, T.: Model for vacancy-induced d0 ferromagnetism in oxide compounds. Phys. Rev. Lett. 96, 207602 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Dorpe, P.V., Motsnyi, V.F., Nijboer, M., Goovaerts, E., Safarov, V.I., Das, J., Roy, W.V., Borghs, G., Boeck, J.D.: Highly efficient room temperature spin injection in a metal-insulator-semiconductor light-emitting diode. Jap. Soc. App. Phys. 42, L502–L504 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Korbecka, A., Majewski, J.A.: On the origin of room-temperature ferromagnetism in wide-gap semiconductors. J. Low Temp. Phys. 35, 53–57 (2009)CrossRefGoogle Scholar
  18. 18.
    Karmakar, D., Mandal, S.K., Kadam, R.M., Paulose, P.L., Rajarajan, A.K., Nath, T.K., Das, A.K., Dasgupta, I., Das, G.P.: Ferromagnetism in Fe-doped ZnO nanocrystals: experiment and theory. Phys. Rev. B. 75, 144404 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Prater, J.T., Ramachandran, S., Tiwari, A., Narayan, J.: Effect of Al doping on the magnetic and electrical properties of Zn(Cu)O based diluted magnetic semiconductors. J. Electron. Mater. 35, 852–856 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Li, J.H., Shen, D.Z., Zhang, J.Y., Zhao, D.X., Li, B.S., Lu, Y.M., Liu, Y.C., Fan, X.W.: The effect of Mn2+ doping on structure and photoluminescence of ZnO Nano films synthesized by sol gel method. J. Lumin. 352, 122–123 (2007)Google Scholar
  21. 21.
    Sharma, A., Gupta, K.V., Rao, F.J., Owens, R., Sharma, R., Ahuja, J.M.O., Guillen, B., Johansson, G.: Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater. 2, 673–677 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    Kundaliya, D.C., Ogale, S.B., Lofland, S.E., Dhar, S., Metting, C.J., Shinde, S.R., Ma, Z., Varughese, B., Ramanujachary, K.V., Riba, L.S., Venkatesan, T.: On the origin of high-temperature ferromagnetism in the low-temperature processed Mn–Zn–O system. Nat. Mater. 3, 709–714 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    Arda, L., Dogan, N., Boyraz, C.: Effects of annealing temperature on microstructure and magnetic properties of Ni0.05Zn0.95Fe2O4 nanoparticles. J. Supercond. Nov. Magn. 31, 365–371 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Guler
    • 1
  • M. Tosun
    • 2
  • A. Gungor
    • 3
    Email author
  • C. Boyraz
    • 4
  • L. Arda
    • 5
  1. 1.Ataturk Faculty of Education, Department of Computer Education and Instructional TechnologiesMarmara UniversityIstanbulTurkey
  2. 2.Faculty of Mechanical Engineering, Mechanical Engineering DepartmentIstanbul Technical UniversityIstanbulTurkey
  3. 3.Faculty of Medicine, Department of BiophysicsBahcesehir UniversityIstanbulTurkey
  4. 4.Faculty of Technology, Department of Mechanical EngineeringMarmara UniversityIstanbulTurkey
  5. 5.Faculty of Engineering and Natural Sciences, Department of Mechatronic EngineeringBahcesehir UniversityIstanbulTurkey

Personalised recommendations