Particulate Generation on Surface of Iron Selenide Films by Air Exposure

Abstract

Nanometer-sized particular structures are generated on the surfaces of FeSe epitaxial films directly after exposure to air; this phenomenon was studied in the current work because these structures are an obstacle to field-induced superconductivity in electric double-layer transistors using FeSe channel layers. Chemical analyses using field-effect scanning Auger electron spectroscopy revealed no clear difference in the chemical composition between the particular structures and the other flat surface region. This observation limits the possible origins of the particulate formation to light elements in air such as O, C, H, and N.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Kamihara, Y., Hiramatsu, H., Hirano, M., Kawamura, R., Yanagi, H., Kamiya, T., Hosono, H.: Iron-based layered superconductor: LaOFeP. J. Am. Chem. Soc. 128, 10012–10013 (2006). https://doi.org/10.1021/ja063355c

    Article  Google Scholar 

  2. 2.

    Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: Iron-based layered superconductor La[O1–xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008). https://doi.org/10.1021/ja800073m

    Article  Google Scholar 

  3. 3.

    For a review, Hosono, H., Kuroki, K.: Iron-based superconductors: current status of materials and pairing mechanism. Physica C. 514, 399–422 (2015). https://doi.org/10.1016/j.physc.2015.02.020

    ADS  Article  Google Scholar 

  4. 4.

    For a review, Hosono, H., Tanabe, K., Takayama-Muromachi, E., Kageyama, H., Yamanaka, S., Kumakura, H., Nohara, M., Hiramatsu, H., Fujitsu, S.: Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides. Sci. Technol. Adv. Mater. 16, 033503 (2015). https://doi.org/10.1088/1468-6996/16/3/033503

    Article  Google Scholar 

  5. 5.

    For a review, Putti, M., Pallecchi, I., Bellingeri, E., Cimberle, M.R., Tropeano, M., Ferdeghini, C., Palenzona, A., Tarantini, C., Yamamoto, A., Jiang, J., Jaroszynski, J., Kametani, F., Abraimov, D., Polyanskii, A., Weiss, J.D., Hellstrom, E.E., Gurevich, A., Larbalestier, D.C., Jin, R., Sales, B.C., Sefat, A.S., McGuire, M.A., Mandrus, D., Cheng, P., Jia, Y., Wen, H.H., Lee, S., Eom, C.B.: New Fe-based superconductors: properties relevant for applications. Supercond. Sci. Technol. 23, 034003 (2010). https://doi.org/10.1088/0953-2048/23/3/034003

    Article  Google Scholar 

  6. 6.

    For a review, Ma, Y.: Progress in wire fabrication of iron-based superconductors. Supercond. Sci. Technol. 25, 113001 (2012). https://doi.org/10.1088/0953-2048/25/11/113001

    Article  Google Scholar 

  7. 7.

    For a review, Shimoyama, J.: Potentials of iron-based superconductors for practical future materials. Supercond. Sci. Technol. 27, 044002 (2014). https://doi.org/10.1088/0953-2048/27/4/044002

    Article  Google Scholar 

  8. 8.

    For a review, Hosono, H., Yamamoto, A., Hiramatsu, H., Ma, Y.: Recent advances in iron-based superconductors toward applications. Mater. Today. 21, 278–302 (2018). https://doi.org/10.1016/j.mattod.2017.09.006

    Article  Google Scholar 

  9. 9.

    For a review, Iida, K., Hänisch, J., Tarantini, C.: Fe-based superconducting thin films on metallic substrates: growth, characteristics, and relevant properties. Appl. Phys. Rev. 5, 031304 (2018). https://doi.org/10.1063/1.5032258

    ADS  Article  Google Scholar 

  10. 10.

    Weiss, J.D., Tarantini, C., Jiang, J., Kametani, F., Polyanskii, A.A., Larbalestier, D.C., Hellstrom, E.E.: High intergrain critical current density in fine-grain (Ba0.6K0.4)Fe2As2 wires and bulks. Nat. Mater. 11, 682–685 (2012). https://doi.org/10.1038/NMAT3333

    ADS  Article  Google Scholar 

  11. 11.

    Togano, K., Matsumoto, A., Kumakura, H.: Fabrication and transport properties of ex situ powder-in-tube (PIT) processed (Ba,K)Fe2As2 superconducting wires. Solid State Commun. 152, 740–746 (2012). https://doi.org/10.1016/j.ssc.2011.12.014

    ADS  Article  Google Scholar 

  12. 12.

    Gao, Z., Togano, K., Matsumoto, A., Kumakura, H.: Achievement of practical level critical current densities in Ba1−xKxFe2As2/Ag tapes by conventional cold mechanical deformation. Sci. Rep. 4, 4065 (2014). https://doi.org/10.1038/srep04065

    ADS  Article  Google Scholar 

  13. 13.

    Weiss, J.D., Yamamoto, A., Polyanskii, A.A., Richardson, R.B., Larbalestier, D.C., Hellstrom, E.E.: Demonstration of an iron-pnictide bulk superconducting magnet capable of trapping over 1 T. Supercond. Sci. Technol. 28, 112001 (2015). https://doi.org/10.1088/0953-2048/28/11/112001

    ADS  Article  Google Scholar 

  14. 14.

    Zhang, X., Oguro, H., Yao, C., Dong, C., Xu, Z., Wang, D., Awaji, S., Watanabe, K., Ma, Y.: Superconducting properties of 100-m class Sr0.6K0.4Fe2As2 tape and pancake coils. IEEE Trans. Appl. Supercond. 27, 7300705 (2017). https://doi.org/10.1109/TASC.2017.2650408

    Article  Google Scholar 

  15. 15.

    Iida, K., Hänisch, J., Trommler, S., Matias, V., Haindl, S., Kurth, F., Lucas del Pozo, I., Hühne, R., Kidszun, M., Engelmann, J., Schultz, L., Holzapfel, B.: Epitaxial growth of superconducting Ba(Fe1–xCox)2As2 thin films on technical ion beam assisted deposition MgO substrates. Appl. Phys. Express. 4, 013103 (2011). https://doi.org/10.1143/APEX.4.013103

    ADS  Article  Google Scholar 

  16. 16.

    Katase, T., Hiramatsu, H., Matias, V., Sheehan, C., Ishimaru, Y., Kamiya, T., Tanabe, K., Hosono, H.: Biaxially textured cobalt-doped BaFe2As2 films with high critical current density over 1 MA/cm2 on MgO-buffered metal-tape flexible substrates. Appl. Phys. Lett. 98, 242510 (2011). https://doi.org/10.1063/1.3599844

    ADS  Article  Google Scholar 

  17. 17.

    Si, W., Zhou, J., Jie, Q., Dimitrov, I., Solovyov, V., Johnson, P.D., Jaroszynski, J., Matias, V., Sheehan, C., Li, Q.: Iron-chalcogenide FeSe0.5Te0.5 coated superconducting tapes for high field applications. Appl. Phys. Lett. 98, 262509 (2011). https://doi.org/10.1063/1.3606557

    ADS  Article  Google Scholar 

  18. 18.

    Trommler, S., Hänisch, J., Matias, V., Hühne, R., Reich, E., Iida, K., Haindl, S., Schultz, L., Holzapfel, B.: Architecture, microstructure and Jc anisotropy of highly oriented biaxially textured co-doped BaFe2As2 on Fe/IBAD-MgO-buffered metal tapes. Supercond. Sci. Technol. 25, 084019 (2012). https://doi.org/10.1088/0953-2048/25/8/084019

    ADS  Article  Google Scholar 

  19. 19.

    Si, W., Han, S.J., Shi, X., Ehrlich, S.N., Jaroszynski, J., Goyal, A., Li, Q.: High current superconductivity in FeSe0.5Te0.5-coated conductors at 30 tesla. Nat. Commun. 4, 1347 (2013). https://doi.org/10.1038/ncomms2337

    ADS  Article  Google Scholar 

  20. 20.

    Iida, K., Kurth, F., Chihara, M., Sumiya, N., Grinenko, V., Ichinose, A., Tsukada, I., Hänisch, J., Matias, V., Hatano, T., Holzapfel, B., Ikuta, H.: Highly textured oxypnictide superconducting thin films on metal substrates. Appl. Phys. Lett. 105, 172602 (2014). https://doi.org/10.1063/1.4900931

    ADS  Article  Google Scholar 

  21. 21.

    Sato, H., Hiramatsu, H., Kamiya, T., Hosono, H.: Enhanced critical-current in P-doped BaFe2As2 thin films on metal substrates arising from poorly aligned grain boundaries. Sci. Rep. 6, 36828 (2016). https://doi.org/10.1038/srep36828

    ADS  Article  Google Scholar 

  22. 22.

    Iida, K., Sato, H., Tarantini, C., Hänisch, J., Jaroszynski, J., Hiramatsu, H., Holzapfel, B., Hosono, H.: High-field transport properties of a P-doped BaFe2As2 film on technical substrate. Sci. Rep. 7, 39951 (2017). https://doi.org/10.1038/srep39951

    ADS  Article  Google Scholar 

  23. 23.

    Xu, Z., Yuan, P., Ma, Y., Cai, C.: High-performance FeSe0.5Te0.5 thin films fabricated on less-well-textured flexible coated conductor templates. Supercond. Sci. Technol. 30, 035003 (2017). https://doi.org/10.1088/1361-6668/30/3/035003

    ADS  Article  Google Scholar 

  24. 24.

    Xu, Z., Yuan, P., Fan, F., Chen, Y., Ma, Y.: Transport properties and pinning analysis for Co-doped BaFe2As2 thin films on metal tapes. Supercond. Sci. Technol. 31, 055001 (2018). https://doi.org/10.1088/1361-6668/aab261

    ADS  Article  Google Scholar 

  25. 25.

    Hsu, F.-C., Luo, J.-Y., Yeh, K.-W., Chen, T.-K., Huang, T.-W., Wu, P.M., Lee, Y.-C., Huang, Y.-L., Chu, Y.-Y., Yan, D.-C., Wu, M.-K.: Superconductivity in the PbO-type structure α-FeSe. Proc. Natl. Acad. Sci. U. S. A. 105, 14262–14264 (2008). https://doi.org/10.1073/pnas.0807325105

    ADS  Article  Google Scholar 

  26. 26.

    Medvedev, S., McQueen, T.M., Troyan, I.A., Palasyuk, T., Eremets, M.I., Cava, R.J., Naghavi, S., Casper, F., Ksenofontov, V., Wortmann, G., Felser, C.: Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure. Nat. Mater. 8, 630–633 (2009). https://doi.org/10.1038/nmat2491

    ADS  Article  Google Scholar 

  27. 27.

    Guo, J., Jin, S., Wang, G., Wang, S., Zhu, K., Zhou, T., He, M., Chen, X.: Superconductivity in the iron selenide KxFe2Se2 (0≤x≤1.0). Phys. Rev. B. 82, 180520(R) (2010). https://doi.org/10.1103/PhysRevB.82.180520

    ADS  Article  Google Scholar 

  28. 28.

    Ying, T.P., Chen, X.L., Wang, G., Jin, S.F., Zhou, T.T., Lai, X.F., Zhang, H., Wang, W.Y.: Observation of superconductivity at 30 – 46 K in AxFe2Se2 (A = Li, Na, Ba, Sr, Ca, Yb, and Eu). Sci. Rep. 2, 426 (2012). https://doi.org/10.1038/srep00426

    ADS  Article  Google Scholar 

  29. 29.

    Burrard-Lucas, M., Free, D.G., Sedlmaier, S.J., Wright, J.D., Cassidy, S.J., Hara, Y., Corkett, A.J., Lancaster, T., Baker, P.J., Blundell, S.J., Clarke, S.J.: Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer. Nat. Mater. 12, 15–19 (2013). https://doi.org/10.1038/nmat3464

    ADS  Article  Google Scholar 

  30. 30.

    Guo, J., Lei, H., Hayashi, F., Hosono, H.: Superconductivity and phase instability of NH3-free Na-intercalated FeSe1–zSz. Nat. Commun. 5, 4756 (2014). https://doi.org/10.1038/ncomms5756

    ADS  Article  Google Scholar 

  31. 31.

    Sedlmaier, S.J., Cassidy, S.J., Morris, R.G., Drakopoulos, M., Reinhard, C., Moorhouse, S.J., O’Hare, D., Manuel, P., Khalyavin, D., Clarke, S.J.: Ammonia-rich high-temperature superconducting intercalates of iron selenide revealed through time-resolved in situ X-ray and neutron diffraction. J. Am. Chem. Soc. 136, 630–633 (2014). https://doi.org/10.1021/ja411624q

    Article  Google Scholar 

  32. 32.

    Lu, X.F., Wang, N.Z., Wu, H., Wu, Y.P., Zhao, D., Zeng, X.Z., Luo, X.G., Wu, T., Bao, W., Zhang, G.H., Huang, F.Q., Huang, Q.Z., Chen, X.H.: Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe. Nat. Mater. 14, 325–329 (2015). https://doi.org/10.1038/nmat4155

    ADS  Article  Google Scholar 

  33. 33.

    Ge, J.F., Liu, Z.L., Liu, C., Gao, C.L., Qian, D., Xue, Q.K., Liu, Y., Jia, J.F.: Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nat. Mater. 14, 285–289 (2015). https://doi.org/10.1038/nmat4153

    ADS  Article  Google Scholar 

  34. 34.

    Shiogai, J., Ito, Y., Mitsuhashi, T., Nojima, T., Tsukazaki, A.: Electric-field-induced superconductivity in electrochemically etched ultrathin FeSe films on SrTiO3 and MgO. Nat. Phys. 12, 42–46 (2016). https://doi.org/10.1038/NPHYS3530

    Article  Google Scholar 

  35. 35.

    Lei, B., Cui, J.H., Xiang, Z.J., Shang, C., Wang, N.Z., Ye, G.J., Luo, X.G., Wu, T., Sun, Z., Chen, X.H.: Evolution of high-temperature superconductivity from a low-Tc phase tuned by carrier concentration in FeSe thin flakes. Phys. Rev. Lett. 116, 077002 (2016). https://doi.org/10.1103/PhysRevLett.116.077002

    ADS  Article  Google Scholar 

  36. 36.

    Hanzawa, K., Sato, H., Hiramatsu, H., Kamiya, T., Hosono, H.: Electric field-induced superconducting transition of insulating FeSe thin film at 35 K. Proc. Natl. Acad. Sci. U. S. A. 113, 3986–3990 (2016). https://doi.org/10.1073/pnas.1520810113

    ADS  Article  Google Scholar 

  37. 37.

    Hanzawa, K., Sato, H., Hiramatsu, H., Kamiya, T., Hosono, H.: Key factors for insulator–superconductor transition in FeSe thin films by electric field. IEEE Trans. Appl. Supercond. 27, 7500405 (2017). https://doi.org/10.1109/TASC.2016.2639738

    Article  Google Scholar 

  38. 38.

    Shiogai, J., Miyakawa, T., Ito, Y., Nojima, T., Tsukazaki, A.: Unified trend of superconducting transition temperature versus Hall coefficient for ultrathin FeSe films prepared on different oxide substrates. Phys. Rev. B. 95, 115101 (2017). https://doi.org/10.1103/PhysRevB.95.115101

    ADS  Article  Google Scholar 

  39. 39.

    Kouno, S., Sato, Y., Katayama, Y., Ichinose, A., Asami, D., Nabeshima, F., Imai, Y., Maeda, A., Ueno, K.: Superconductivity at 38 K at an electrochemical interface between an ionic liquid and Fe(Se0.8Te0.2) on various substrates. Sci. Rep. 8, 14731 (2018). https://doi.org/10.1038/s41598-018-33121-7.

  40. 40.

    Hiramatsu, H., Hosono, H.: Thin-film growth and device fabrication of iron-based superconductors. TEION KOGAKU (J. Cryo. Soc. Jpn). 52, 433–442 (2017). (in Japanese)). https://doi.org/10.2221/jcsj.52.433

    Article  Google Scholar 

  41. 41.

    Katase, T., Hiramatsu, H., Kamiya, T., Hosono, H.: Electric double-layer transistor using layered iron selenide Mott insulator TlFe1.6Se2. Proc. Natl. Acad. Sci. U. S. A. 111, 3979–3983 (2014). https://doi.org/10.1073/pnas.1318045111

    ADS  Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) through the Element Strategy Initiative to Form Core Research Center. H. Hi. was also supported by the Japan Society for the Promotion of Science (JSPS) through Grant-in-Aid for Scientific Researches (A) and (B) (Grant Nos. 17H01318 and 18H01700), and Support for Tokyotech Advanced Research (STAR).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hidenori Hiramatsu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hiramatsu, H., Hanzawa, K., Kamiya, T. et al. Particulate Generation on Surface of Iron Selenide Films by Air Exposure. J Supercond Nov Magn 32, 3047–3055 (2019). https://doi.org/10.1007/s10948-019-5020-9

Download citation

Keywords

  • Iron-based superconductors
  • Chalcogenides
  • FeSe
  • Electric double-layer transistor
  • Degradation