Hidden Pair-Density-Wave Order in Cuprate Superconductors

Abstract

When the Mott insulating state is suppressed by charge carrier doping, the pseudogap phenomenon emerges, where at the low-temperature limit, superconductivity coexists with some ordered electronic states. Within the framework of the kinetic-energy–driven superconductivity, the nature of the pair-density-wave order in cuprate superconductors is studied by taking into account the pseudogap effect. It is shown that the onset of the pair-density-wave order does not produce an ordered gap, but rather a novel hidden order as a result of the interplay of the charge-density-wave order with superconductivity. As a consequence, this novel hidden pair-density-wave order as a subsidiary order parameter coexists with the charge-density-wave order in the superconducting state, and is absent from the normal state.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    See, e.g., Hüfner, S., et al.: . Rep. Prog. Phys. 71, 062501 (2008)

    ADS  Google Scholar 

  2. 2.

    See, e.g., Basov, D.N., Timusk, T.: . Rev. Mod. Phys. 77, 721 (2005)

    ADS  Google Scholar 

  3. 3.

    See, e.g., Timusk, T., Statt, B.: . Rep. Prog. Phys. 62, 61 (1999)

    ADS  Google Scholar 

  4. 4.

    Norman, M.R., et al.: . Nature 392, 157 (1998)

    ADS  Google Scholar 

  5. 5.

    Yoshida, T., et al.: . Phys. Rev. B 74, 224510 (2006)

    ADS  Google Scholar 

  6. 6.

    Kanigel, A., et al.: . Phys. Rev. Lett. 99, 157001 (2007)

    ADS  Google Scholar 

  7. 7.

    Yoshida, T., et al.: . Phys. Rev. Lett. 103, 037004 (2009)

    ADS  Google Scholar 

  8. 8.

    Yang, H. -B., et al.: . Nature 456, 77 (2008)

    ADS  Google Scholar 

  9. 9.

    Meng, J., et al.: . Nature 462, 335 (2009)

    ADS  Google Scholar 

  10. 10.

    Yang, H.-B., et al.: . Phys. Rev. Lett. 107, 047003 (2011)

    ADS  Google Scholar 

  11. 11.

    See, e.g., The review, Comin, R., Damascelli, A.: . Annu. Rev. Condens. Matter Phys. 7, 369 (2016)

    Google Scholar 

  12. 12.

    Wu, T., et al.: . Nature 477, 191 (2011)

    ADS  Google Scholar 

  13. 13.

    Chang, J., et al.: . Nat. Phys. 8, 871 (2012)

    Google Scholar 

  14. 14.

    Ghiringhelli, G., et al.: . Science 337, 821 (2012)

    ADS  Google Scholar 

  15. 15.

    Comin, R., et al.: . Science 343, 390 (2014)

    ADS  Google Scholar 

  16. 16.

    da Silva Neto, E.H., et al.: . Science 343, 393 (2014)

    ADS  Google Scholar 

  17. 17.

    Fujita, K., et al.: . Science 344, 612 (2014)

    ADS  Google Scholar 

  18. 18.

    Campi, G., et al.: . Nature 525, 359 (2015)

    ADS  Google Scholar 

  19. 19.

    Comin, R., et al.: . Nat. Mater. 14, 796 (2015)

    ADS  Google Scholar 

  20. 20.

    Peng, Y.Y., et al.: . Phys. Rev. B 94, 184511 (2016)

    ADS  Google Scholar 

  21. 21.

    Hinton, J.P., et al.: . Sci. Rep. 6, 23610 (2016)

    ADS  Google Scholar 

  22. 22.

    Hamidian, M.H., et al.: . Nature 532, 343 (2016)

    ADS  Google Scholar 

  23. 23.

    Badoux, S., et al.: . Nature 531, 210 (2016)

    ADS  Google Scholar 

  24. 24.

    Sachdev, S., Placa, R.L.: . Phys. Rev. Lett. 111, 027202 (2013)

    ADS  Google Scholar 

  25. 25.

    Meier, H., et al.: . Phys. Rev. B 88(R), 020506 (2013)

    ADS  Google Scholar 

  26. 26.

    Harrison, N., Sebastian, S.E.: . New J. Phys. 16, 063025 (2014)

    ADS  Google Scholar 

  27. 27.

    Atkinson, W.A., et al.: . New J. Phys. 17, 013025 (2015)

    ADS  Google Scholar 

  28. 28.

    Feng, S., et al.: . Phil. Mag. 96, 1245 (2016)

    ADS  Google Scholar 

  29. 29.

    Mou, Y., et al.: . Phil. Mag. 97, 3361 (2017)

    ADS  Google Scholar 

  30. 30.

    Zhao, H., et al.: . J. Supercond. Nov. Magn. 31, 683 (2018)

    Google Scholar 

  31. 31.

    Zhao, H., et al.: . J. Supercond. Nov. Magn. 29, 3027 (2016)

    Google Scholar 

  32. 32.

    Gao, D., et al.: . Phys. C 551, 72 (2018)

    ADS  Google Scholar 

  33. 33.

    Lee, P.A.: . Phys. Rev. X 4, 031017 (2014)

    Google Scholar 

  34. 34.

    See, e.g., Fradkin, E., et al.: . Rev. Mod. Phys. 87, 457 (2015)

    Google Scholar 

  35. 35.

    Wang, Y., et al.: . Phys. Rev. B 91, 115103 (2015)

    ADS  Google Scholar 

  36. 36.

    Feng, S.: . Phys. Rev. B 68, 184501 (2003)

    ADS  Google Scholar 

  37. 37.

    Feng, S., et al.: . Physica C 436, 14 (2006)

    ADS  Google Scholar 

  38. 38.

    Feng, S., et al.: . Phys. Rev. B. 85, 054509 (2012)

    ADS  Google Scholar 

  39. 39.

    See, e.g., the review, Feng, S., et al.: . Int. J. Mod. Phys. B 29, 1530009 (2015)

    Google Scholar 

  40. 40.

    Feng, S., et al.: . Phys. C 517, 5 (2015)

    ADS  Google Scholar 

  41. 41.

    Gao, D., et al.: . J. Low Temp. Phys. 192, 19 (2018)

    ADS  Google Scholar 

  42. 42.

    See, e.g., the review, Damascelli, A., et al.: . Rev. Mod. Phys. 75, 473 (2003)

    ADS  Google Scholar 

  43. 43.

    See, e.g., the review, Campuzano, J.C., et al.: . In: Bennemann, K.H., Ketterson, J. (eds.) Physics of Superconductors, vol. II, p 167. Springer, Berlin (2004)

  44. 44.

    See, e.g., the review, Zhou, X.J., et al.: Handbook of High-Temperature Superconductivity: Theory and Experiment. In: Schrieffer, J. (ed.) , p 87. Springer, New York (2007)

  45. 45.

    Zhao, H., et al.: . Phys. C 534, 1 (2017)

    ADS  Google Scholar 

  46. 46.

    See, e.g., Mahan, G.D.: Many-Particle Physics. Plenum Press, New York (1981)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Yongjun Wang for helpful discussions.

Funding

This work was supported by the National Key Research and Development Program of China under Grant No. 2016YFA0300304, and the National Natural Science Foundation of China (NSFC) under Grant Nos. 11574032 and 11734002.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shiping Feng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, S., Gao, D., Liu, Y. et al. Hidden Pair-Density-Wave Order in Cuprate Superconductors. J Supercond Nov Magn 32, 2745–2749 (2019). https://doi.org/10.1007/s10948-019-5011-x

Download citation

Keywords

  • Charge-density-wave order
  • Pair-density-wave order
  • Superconducting state
  • Normal state
  • Cuprate superconductors