Skip to main content
Log in

Kinetic Inductance in Superconducting Microstructures

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Simple measuring setup was used to measure high-frequency impedance of superconducting Ti and NbN microstructures at low temperatures. The shift of resonance frequency below the temperature of superconducting transition compared with the normal state clearly indicates the increase of inductance of the system. The effect is interpreted as the impact of kinetic inductance originating from “inertial” properties of Cooper pairs. Kinetic inductance of superconducting micro and nanostructures should be taken into consideration for various cryoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kerman, A.J., Dauler, E.A., Keicher, W.E., Yang, J.K.W., Berggren, K.K., Gol'tsman, G., Voronov, B.: Appl. Phys. Lett. 88, 111116 (2006)

    Article  ADS  Google Scholar 

  2. Kerman, A.J., Dauler, E.A., Yang, J.K.W., Rosfjord, K.M., Anant, V., Berggren, K.K., Gol’tsman, G.N., Voronov, B.M.: Appl. Phys. Lett. 90, 101110 (2007)

    Article  ADS  Google Scholar 

  3. H.J.M. ter Brake, F.-Im. Buchholz, G. Burnell, T. Claeson, D. Crété, P. Febvre, G.J. Gerritsma, H. Hilgenkamp, R. Humphreys, Z. Ivanov, W. Jutzi, M.I. Khabipov, J. Mannhart, H.-G. Meyer, J. Niemeyer, A. Ravex, H. Rogalla, M. Russo, J. Satchell, M. Siegel, H. Töpfer, F.H. Uhlmann, J.-C. Villégier, E. Wikborg, D. Winkler and A.B. Zorin: Physica C 439, 1 (2006).

  4. Tolpygo, S.K., Bolkhovsky, V., Rastogi, R., Zarr, S., Day, A.L., Golden, E., Weir, T.J., Wynn, A., Johnson, L.M.: IEEE Trans. Appl. Supercond. 29, 1102513 (2019)

    Google Scholar 

  5. Korneeva, Y., Vodolazov, D.Y., Semenov, A.V., Florya, I., Simonov, N., Baeva, E., Korneev, A., Goltsman, G., Klapwijk, T.M.: Phys Rev Appl. 9, 064037 (2018)

    Article  ADS  Google Scholar 

  6. Kuzmin, L.S., Blagodatkin, A.V., Mukhin, A., Pimanov, D.A., Zbrozhek, V.O., Gordeeva, A.V., Pankratov, A.L., Chiginev, A.V.: Supercond. Sci. Technol. 32, 035009 (2019)

    Article  ADS  Google Scholar 

  7. Arutyunov, K. Yu., Golubev, D.S., Zaikin, A.D.: Phys. Rep. 464, 1 (2008)

  8. Annunziata A J : Ph.D. dissertation, Yale University (2010).

  9. Ricci, A., Poccia, N., Campi, G., Joseph, B., Arrighetti, G., Barba, L., Takano, Y.: Phys. Rev. B. 84(6), 060511 (2011)

    Article  ADS  Google Scholar 

  10. Ricci, A., Poccia, N., Joseph, B., Innocenti, D., Campi, G., Zozulya, A., Takeya, H.: Phys. Rev. B. 91(2), 020503 (2015)

    Article  ADS  Google Scholar 

  11. Campi, G., Bianconi, A., Poccia, N., Bianconi, G., Barba, L., Arrighetti, G., Burghammer, M.: Nature. 525(7569), 359 (2015)

    Article  ADS  Google Scholar 

  12. Fratini, M., Poccia, N., Ricci, A., Campi, G., Burghammer, M., Aeppli, G., Bianconi, A.: Nature. 466(7308), 841 (2010)

    Article  ADS  Google Scholar 

  13. Agrestini, S., Metallo, C., Filippi, M., Simonelli, L., Campi, G., Sanipoli, C., Latini, A.: Phys. Rev. B. 70(13), 134514 (2004)

    Article  ADS  Google Scholar 

  14. Arutyunov, K. Yu., Lehtinen, J.S.: Nanoscale Res. Lett. 11, 364 (2016)

  15. Elo, T., Lähteenmäki, P., Golubev, D., Savin, A., Arutyunov, K., Hakonen, P.J.: J. Low Temp. Phys. 189, 204 (2017)

    Article  ADS  Google Scholar 

  16. Arutyunov, K. Yu., Ramos-Álvarez, A., Semenov, A.V., Korneeva, Y.P., An, P.P., Korneev, A.A., Murphy, A., Bezryadin, A., Gol'tsman, G.N.: Nanotechnology. 27, 47LT021 (2016)

  17. Arutyunov, K. Yu., Ryynanen, T.V., Pekola, J.P., Pavolotski, A.B.: Phys. Rev. B. 63, 092506 (2001)

  18. Lehtinen, J.S., Arutyunov, K. Yu.: Supercond. Sci. Technol. 25, 124007 (2012)

  19. Arutyunov, K. Yu., Lehtinen, J.S., Rantala, T.: J. Supercond. Nov. Magn. 29, 569 (2016)

  20. Zavyalov, V.V., Chernyaev, S.A., Shein, K.V., Shukaleva, A.G., Arutyunov, K. Yu.: J. Phys. Conf. Ser. 969, 012086 (2017)

  21. Annunziata, A.J., Santavicca, D.F., Frunzio, L., Catelani, G., Rooks, M.J., Frydman, A., Prober, D.E.: Nanotechnology. 21, 445202 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the SCONTEL team and personally, A. A. Korneev for the fabrication of NbN samples, and A. Yu. Kuntsevich and V. I. Chichkov for training the students (V. O. Emelyanova, M. A. Logunova, and A. A. Zarudneva).

Funding

The article was prepared within the framework of the Academic Fund Program at the National Research University Higher School of Economics (HSE) in 2019–2020 (grant no. 19-01-050) and by the Russian Academic Excellence Project “5-100.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yu. Arutyunov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shein, K.V., Emelyanova, V.O., Logunova, M.A. et al. Kinetic Inductance in Superconducting Microstructures. J Supercond Nov Magn 33, 2325–2327 (2020). https://doi.org/10.1007/s10948-019-05401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05401-4

Keywords

Navigation