Skip to main content
Log in

Memristive Properties of Oxide-based High-Temperature Superconductors

  • Review
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The study of memristive properties or effect of resistive switchings in four classes of high-temperature superconductors (HTSC), namely Bi2Sr2CaCu2O8+y (BSCCO), YBa2Cu3O7−y (YBCO), Ba0.6K0.4BiO3−y (BKBO), and Nd2−xCexCuO4−y (NCCO), is presented. The purpose of this study is to reveal functional properties of HTSC which become apparent in the effects under discussion, prospects of usage of HTSC-based memristors in applications, and search for new mechanisms of strongly correlated nature to realize new-generation memristors (Tulina 1). The properties are as follows: undergoing the metal-insulator transition at oxygen doping, transport anisotropy, and existence of charge reservoirs through which doping of conductive copper–oxygen layers is carried out. These are the main functional properties of HTSC which allows their usage in memristors. By the example of study of bipolar effect of resistive switching in HTSC-based heterojunctions, it is shown how one can form memristor structures based on HTSC using their functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tulina, N.A.: Memristor properties of high temperature superconductors. arXiv:1801.09428(2018)

  2. Li, Y., Wang, Z., Midya, R., Xia, Q., Yang, J.J.: Review of memristor devices in neuromorphic computing: materials sciences and device challenges. J. Phys. D 51(50), 503002 (2018). https://doi.org/10.1088/1361-6463/aade3f

    Article  ADS  Google Scholar 

  3. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008). https://doi.org/10.1038/nature06932

    Article  ADS  Google Scholar 

  4. Yang, J.J., Strukov, D.B., Stewart, D.R.: Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013). https://doi.org/10.1038/nnano.2012.240

    Article  ADS  Google Scholar 

  5. Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007). https://doi.org/10.1038/nmat2023

    Article  ADS  Google Scholar 

  6. Pershin, Y.V., Di Ventra, M.: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60 (2), 145–227 (2011). https://doi.org/10.1080/00018732.2010.544961

    Article  ADS  Google Scholar 

  7. Jeong, D.S., Thomas, R., Katiyar, R.S., Scott, J.F., Kohlstedt, H., Petraru, A., Hwang, C.S.: Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75(7), 076502–076534 (2012). https://doi.org/10.1088/0034-4885/75/7/076502

    Article  ADS  Google Scholar 

  8. Lim, E.W., Ismail, R.: Conduction mechanism of valence change resistive switching memory: a survey. Electronics 4(3), 586–613 (2015). https://doi.org/10.3390/electronics4030586

    Article  Google Scholar 

  9. Pérez-Tomás, A.: Functional oxides: functional oxides for photoneuromorphic engineering: toward a solar brain (Adv. Mater. Interfaces 15/2019). Adv. Mater. Interfaces 6(15), 1970096 (2019). https://doi.org/10.1002/admi.201970096

    Article  Google Scholar 

  10. Pickett, W.E., Singh, D.J., Krakauer, H., Cohen, R.E.: Fermi surfaces, fermi liquids, and high-temperature superconductors. Science 255(5040), 46–54 (1992). https://doi.org/10.1126/science.255.5040.46

    Article  ADS  Google Scholar 

  11. Tulina, N.A., Ionov, A.M., Chaika, A.N.: Reversible electrical switching at the Bi2Sr2CaCu2O8+y surface in the normal metal–Bi2Sr2CaCu2O8+y single crystal heterojunction. Phys. C 366(1), 23–30 (2001). https://doi.org/10.1016/S0921-4534(01)00631-1

    Article  ADS  Google Scholar 

  12. Tulina, N.A., Borisenko, I.Y., Ivanov, A.A., Ionov, A.M., Shmytko, I.M.: Oxygen doping of HTSC and resistive switching in HTSC-based heterostructures. SpringerPlus 2(1), 384 (2013). https://doi.org/10.1186/2193-1801-2-384

    Article  Google Scholar 

  13. Tulina, N.A., Rossolenko, A.N., Ivanov, A.A., Sirotkin, V.V., Shmytko, I.M., Borisenko, I.Y., Ionov, A.M.: Nd2−xCexCuO4−y/Nd2−xCexOy boundary and resistive switchings in mesoscopic structures on base of epitaxial Nd1.86Ce0.14CuO4−y films. Phys. C 527, 41–45 (2016). https://doi.org/10.1016/j.physc.2016.05.015

    Article  ADS  Google Scholar 

  14. Tulina, N.A., Ivanov, A.A., Rossolenko, A.N., Shmytko, I.M., Ionov, A.M., Mozhchil, R.N., Bozhko, S.I., Borisenko, I.Y., Tulin, V.A.: X-ray photoelectron spectroscopy studies of electronic structure of Nd2−xCexCuO4−y and YBa2Cu3O7−y epitaxial film surfaces and resistive switchings in high temperature superconductor-based heterostructures. Mater. Lett. 203, 97–99 (2017). https://doi.org/10.1016/j.matlet.2017.05.091

    Article  Google Scholar 

  15. Tulina, N.A., Borisenko, I.Y., Rossolenko, A.N., Ivanov, A.A., Sirotkin, V.V., Shmytko, I.M., Tulin, V.A.: Static and dynamic effects of the resistive switchings in heterocontacts based on superconductive Nd2−xCexCuO4−y films. Microelectron. Eng. 187-188, 116–120 (2018). https://doi.org/10.1016/j.mee.2017.11.006

    Article  Google Scholar 

  16. Zakharov, A.A., Johansson, U., Leandersson, M., Nylén, H., Qvarford, M., Lindau, I., Nyholm, R.: Metal-dielectric transition in Ba0.6K0.4BiO3−y single crystals studied by scanning photoelectron microscopy. Phys. Rev. B 56 (10), R5755–R5758 (1997). https://doi.org/10.1103/PhysRevB.56.R5755

    Article  ADS  Google Scholar 

  17. Sano, Y.: Effect of space angle on constriction resistance and contact resistance for a point contact. J. Appl. Phys. 58(7), 2651–2654 (1985). https://doi.org/10.1063/1.335897

    Article  ADS  Google Scholar 

  18. Tulina, N.A., Borisenko, I.Y., Sirotkin, V.V.: Bipolar resistive switchings in Bi2Sr2CaCu2O8+δ. Solid State Commun. 170, 48–52 (2013). https://doi.org/10.1016/j.ssc.2013.07.023

    Article  ADS  Google Scholar 

  19. Aichhorn, M., Arrigoni, E.: Weak phase separation and the pseudogap in the electron-doped cuprates. Europhys. Lett. 72(1), 117–123 (2005). https://doi.org/10.1209/epl/i2005-10192-1

    Article  ADS  Google Scholar 

  20. Fournier, P., Maiser, E., Greene, R.L.: Current research issues for the electron-doped cuprates. In: Bok, J., Deutscher, G., Pavuna, D., Wolf, S.A. (eds.) The Gap Symmetry and Fluctuations in High-Tc Superconductors. https://doi.org/10.1007/0-306-47081-0_9, pp 145–158. Springer, Boston (2002)

  21. Dagotto, E.: Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 66(3), 763–840 (1994). https://doi.org/10.1103/RevModPhys.66.763

    Article  ADS  Google Scholar 

  22. Tulina, N.A., Klinkova, L.A.: Reversal of the resistive switching effect in electron-doped Ba0.6K0.4BiO3−x. J. Exp. Theor. Phys. 105(1), 238–240 (2007). https://doi.org/10.1134/S1063776107070527

    Article  ADS  Google Scholar 

  23. Tulina, N.A., Borisenko, I.Y.: Frequency dependence of the resistive switching effect in Bi2Sr2CaCu2O8+y/Ag film heterocontacts. Phys. Lett. A 372(6), 918–923 (2008). https://doi.org/10.1016/j.physleta.2007.08.045

    Article  ADS  MATH  Google Scholar 

  24. Higgins, J.S., Dagan, Y., Barr, M.C., Weaver, B.D., Greene, R.L.: Role of oxygen in the electron-doped superconducting cuprates. Phys. Rev. B 73(10), 104510 (2006). https://doi.org/10.1103/PhysRevB.73.104510

    Article  ADS  Google Scholar 

  25. Gauthier, J., Gagné, S., Renaud, J., Gosselin, M.-È., Fournier, P., Richard, P.: Different roles of cerium substitution and oxygen reduction in transport in Pr2−xCexCuO4 thin films. Phys. Rev. B 75(2), 024424 (2007). https://doi.org/10.1103/PhysRevB.75.024424

    Article  ADS  Google Scholar 

  26. Plecenik, T., Tomášek, M., Belogolovskii, M., Truchly, M., Gregor, M., Noskovič, J., Zahoran, M., Roch, T., Boylo, I., Španková, M., Chromik, Š., Kúš, P., Plecenik, A.: Effect of crystallographic anisotropy on the resistance switching phenomenon in perovskites. J. Appl. Phys. 111(5), 056106 (2012). https://doi.org/10.1063/1.3691598

    Article  ADS  Google Scholar 

  27. Truchly, M., Plecenik, T., Zhitlukhina, E., Belogolovskii, M., Dvoranova, M., Kus, P., Plecenik, A.: Inverse polarity of the resistive switching effect and strong inhomogeneity in nanoscale YBCO-metal contacts. J. Appl. Phys. 120(18), 185302 (2016). https://doi.org/10.1063/1.4967392

    Article  ADS  Google Scholar 

  28. Schulman, A., Acha, C.: Resistive switching effects on the spatial distribution of phases in metal-complex oxide interfaces. Physica B 407(16), 3147–3149 (2012). https://doi.org/10.1016/j.physb.2011.12.049

    Article  ADS  Google Scholar 

  29. Schulman, A., Rozenberg, M.J., Acha, C.: Anomalous time relaxation of the nonvolatile resistive state in bipolar resistive-switching oxide-based memories. Phys. Rev. B 86 (10), 104426 (2012). https://doi.org/10.1103/PhysRevB.86.104426

    Article  ADS  Google Scholar 

  30. Schulman, A., Lanosa, L.F., Acha, C.: Poole-Frenkel effect and variable-range hopping conduction in metal/YBCO resistive switching devices. J. Appl. Phys. 118(4), 044511 (2015). https://doi.org/10.1063/1.4927522

    Article  ADS  Google Scholar 

  31. Zhang, H.J., Zhang, X.P., Shi, J.P., Tian, H.F., Zhao, Y.G.: Effect of oxygen content and superconductivity on the nonvolatile resistive switching in YBa2Cu3O6+x/Nb-doped SrTiO3 heterojunctions. Appl. Phys. Lett. 94(9), 092111 (2009). https://doi.org/10.1063/1.3095493

    Article  ADS  Google Scholar 

  32. Tulina, N.A., Rossolenko, A.N., Shmytko, I.M., Ivanov, A.A., Sirotkin, V.V., Borisenko, I.Y., Tulin, V.A.: Properties of percolation channels in planar memristive structures based on epitaxial films of a YBa2Cu3O7−δ high temperature superconductor. Supercond. Sci. Technol. 32(1), 015003 (2018). https://doi.org/10.1088/1361-6668/aae966

    Article  ADS  Google Scholar 

  33. Jorgensen, J.D., Veal, B.W., Paulikas, A.P., Nowicki, L.J., Crabtree, G.W., Claus, H., Kwok, W.K.: Structural properties of oxygen-deficient YBa2Cu3O7−δ. Phys. Rev. B 41(4), 1863–1877 (1990). https://doi.org/10.1103/PhysRevB.41.1863

    Article  ADS  Google Scholar 

  34. Celinska, J., McWilliams, C., Paz de Araujo, C., Xue, K.-H.: Material and process optimization of correlated electron random access memories. J. Appl. Phys. 109(9), 091603 (2011). https://doi.org/10.1063/1.3581197

    Article  ADS  Google Scholar 

  35. Pan, T.-M., Lu, C.-H.: Forming-free resistive switching behavior in Nd2O3, Dy2o3, and Er2O3 films fabricated in full room temperature. Appl. Phys. Lett. 99(11), 113509 (2011). https://doi.org/10.1063/1.3638490

    Article  ADS  Google Scholar 

  36. Oka, T., Nagaosa, N.: Interfaces of correlated electron systems: Proposed mechanism for colossal electroresistance. Phys. Rev. Lett. 95, 266403 (2005). https://doi.org/10.1103/PhysRevLett.95.266403

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-29-03021 mk)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ivanov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tulina, N.A., Ivanov, A.A. Memristive Properties of Oxide-based High-Temperature Superconductors. J Supercond Nov Magn 33, 2279–2286 (2020). https://doi.org/10.1007/s10948-019-05383-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05383-3

Keywords

Navigation