Skip to main content
Log in

Regulated Electromagnetic Behavior of Transition Metal–Doped Lead Sulfide Pb0.9A0.1S (A: Fe, Co, and Ni) Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The present work reconnoiters the dielectric, electrical, and magnetic properties of transition metal–doped lead sulfide nanoparticles (PbS-NPs) synthesized by co-precipitation technique. The particle size was assessed from the histogram obtained by transmission electron microscopy (TEM). Frequency- and temperature-dependent measurements of dielectric permittivity and ac conductivity have been carried out for transition metal–doped lead sulfide nanoparticles (PbS-NPs). The transition metal–doped lead sulfide nanoparticles show ferromagnetic nature with enhanced magnetization with the doping of Ni, Co, and Fe respectively as compared with pure lead sulfide nanoparticles. These nanoparticles may find its application in electronic storage and DMS spintronic devices due to their enhanced and regulated nature of dielectric and magnetic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Volobuev, V.V., Stetsenko, A.N., Sipatov, A.Y., Van Lierop, J.: Magnetic exchange effects in PbS/Fe/EuS/PbS thin films. Phys Rev B - Condens Matter Mater Phys. 81, 1–7 (2010). https://doi.org/10.1103/PhysRevB.81.134430

    Article  Google Scholar 

  2. Dietl, T.: Spintronics And Ferromagnetism In Wide-Band-Gap Semiconductors. In: AIP Conference Proceedings, pp. 56–64. AIP (2005). https://doi.org/10.1063/1.1993996

  3. Dietl, T.: Zener Model description of ferromagnetism in zinc-blende magnetic semiconductors. Science. 287(80), 1019–1022 (2000). https://doi.org/10.1126/science.287.5455.1019

    Article  ADS  Google Scholar 

  4. Vaughan, D.J., Corkhill, C.L.: Mineralogy of sulfides. Elements. 13, 81–87 (2017). https://doi.org/10.2113/gselements.13.2.81

    Article  Google Scholar 

  5. Wang, Y., Han, X., Petersen, S., Frische, M., Qiu, Z., Li, H., Li, H., Wu, Z., Cui, R.: Mineralogy and trace element geochemistry of sulfide minerals from the Wocan Hydrothermal Field on the slow-spreading Carlsberg Ridge. Indian Ocean Ore Geol Rev. 84, 1–19 (2017). https://doi.org/10.1016/j.oregeorev.2016.12.020

    Article  Google Scholar 

  6. Priyanka, U., Gowda, K.M., M G E, S, T.B., Nitish, N., Mohan, B.R.: Biologically synthesized PbS nanoparticles for the detection of arsenic in water. Int Biodeterior Biodegrad. 119, 78–86 (2017). https://doi.org/10.1016/j.ibiod.2016.10.009

    Article  Google Scholar 

  7. Mubiayi, K.P., Revaprasadu, N., Garje, S.S., Moloto, M.J.: Designing the morphology of PbS nanoparticles through a single source precursor method. J Saudi Chem Soc. 21, 593–598 (2017). https://doi.org/10.1016/j.jscs.2017.02.002

    Article  Google Scholar 

  8. Murgunde, B.K., Rabinal, M.K., Kalasad, M.N.: Biologically active nanocomposite of DNA-PbS nanoparticles: a new material for non-volatile memory devices. Appl Surf Sci. 427, 344–353 (2018). https://doi.org/10.1016/j.apsusc.2017.08.001

    Article  ADS  Google Scholar 

  9. Tshemese, Z., Khan, M.D., Mlowe, S., Revaprasadu, N.: Synthesis and characterization of PbS nanoparticles in an ionic liquid using single and dual source precursors. Mater Sci Eng B. 227, 116–121 (2018). https://doi.org/10.1016/j.mseb.2017.10.018

    Article  Google Scholar 

  10. Suganya, M., Prabha, D., Anitha, S., Srivind, J., Balamurugan, S., Nagarethinam, V.S., Balu, A.R.: Thermal behavior, magnetic and antimicrobial properties of PbS–CdO nanocomposite synthesized by a simple soft chemical route. J Mater Sci Mater Electron. 28, 12348–12355 (2017). https://doi.org/10.1007/s10854-017-7054-8

    Article  Google Scholar 

  11. Agrawal, S., Parveen, A., Azam, A.: Band gap tuning and fluorescence properties of lead sulfide Pb0.9A0.1S (A: Fe, Co, and Ni) nanoparticles by transition metal doping. Opt Mater (Amst). 76C, 21–27 (2018). https://doi.org/10.1016/j.optmat.2017.12.015

    Article  ADS  Google Scholar 

  12. Agrawal, S., Parveen, A., Azam, A.: Microwave assisted synthesis of Co doped NiO nanoparticles and its fluorescence properties. J Lumin. 184, 250–255 (2017). https://doi.org/10.1016/j.jlumin.2016.12.035

    Article  Google Scholar 

  13. Kang, I., Wise, F.W.: Electronic structure and optical properties of PbS and PbSe quantum dots. J Opt Soc Am B. 14, 1632 (1997). https://doi.org/10.1364/JOSAB.14.001632

    Article  ADS  Google Scholar 

  14. Thangavel, S., Ganesan, S., Chandramohan, S., Sudhagar, P., Kang, Y.S., Hong, C.H.: Band gap engineering in PbS nanostructured thin films from near-infrared down to visible range by in situ Cd-doping. J Alloys Compd. 495, 234–237 (2010). https://doi.org/10.1016/j.jallcom.2010.01.135

    Article  Google Scholar 

  15. Kumar, D., Agarwal, G., Tripathi, B., Vyas, D., Kulshrestha, V.: Characterization of PbS nanoparticles synthesized by chemical bath deposition. J Alloys Compd. 484, 463–466 (2009). https://doi.org/10.1016/j.jallcom.2009.04.127

    Article  Google Scholar 

  16. Zhao, X., Gorelikov, I., Musikhin, S., Cauchi, S., Sukhovatkin, V., Sargent, E.H., Kumacheva, E.: Synthesis and optical properties of thiol-stabilized PbS nanocrystals. Langmuir. 21, 1086–1090 (2005). https://doi.org/10.1021/la048730y

    Article  Google Scholar 

  17. Koao, L.F., Dejene, F.B., Swart, H.C.: Synthesis of pbs nanostructures by chemical bath deposition method. Int J Electrochem Sci. 9, 1747–1757 (2014)

    Google Scholar 

  18. Sagadevan, S., Pal, K., Hoque, E., Chowdhury, Z.Z.: A chemical synthesized Al-doped PbS nanoparticles hybrid composite for optical and electrical response. J Mater Sci Mater Electron. 28, 10902–10908 (2017). https://doi.org/10.1007/s10854-017-6869-7

    Article  Google Scholar 

  19. Pan, Y.F., Wang, G.S., Liu, L., Guo, L., Yu, S.H.: Binary synergistic enhancement of dielectric and microwave absorption properties: a composite of arm symmetrical PbS dendrites and polyvinylidene fluoride. Nano Res. 10, 284–294 (2017). https://doi.org/10.1007/s12274-016-1290-8

    Article  Google Scholar 

  20. Ravishankar, S., Balu, A.R., Usharani, K., Balamurugan, S., Prabha, D., Nagarethinam, V.S.: Optical and magnetic properties of PbS thin films doped with Fe2+ ions. Optik (Stuttg). 134, 121–127 (2017). https://doi.org/10.1016/j.ijleo.2017.01.010

    Article  ADS  Google Scholar 

  21. Patel, A.A., Wu, F., Zhang, J.Z., Torres-Martinez, C.L., Mehra, R.K., Yang, Y., Risbud, S.H.: Synthesis, Optical spectroscopy and ultrafast electron dynamics of PbS nanoparticles with different surface capping. J Phys Chem B. 104, 11598–11605 (2000). https://doi.org/10.1021/jp000639p

    Article  Google Scholar 

  22. Cui, T., Cui, F., Zhang, J., Wang, J., Huang, J., Lu, C., Chen, Z.: From Monomeric Nanofibers to PbS Nanoparticles / Polymer Composite Nanofibers through the Combined Use of γ -Irradiation and Gas / Solid Reaction. 6298–6299 (2006). https://doi.org/10.1021/ja060517w

  23. Muthukumaran, S., Gopalakrishnan, R.: Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt Mater (Amst). 34, 1946–1953 (2012). https://doi.org/10.1016/j.optmat.2012.06.004

    Article  ADS  Google Scholar 

  24. Nilavazhagan, S., Muthukumaran, S., Ashokkumar, M.: Structural, optical and morphological properties of La, Cu co-doped SnO2 nanocrystals by co-precipitation method. Opt Mater (Amst). 37, 425–432 (2014). https://doi.org/10.1016/j.optmat.2014.07.003

    Article  ADS  Google Scholar 

  25. Phiwdang, K., Suphankij, S., Mekprasart, W., Pecharapa, W.: Synthesis of CuO nanoparticles by precipitation method using different precursors. Energy Procedia. 34, 740–745 (2013). https://doi.org/10.1016/j.egypro.2013.06.808

    Article  Google Scholar 

  26. Anbuselvan, D., Muthukumaran, S.: Defect related microstructure, optical and photoluminescence behaviour of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method. Opt Mater (Amst). 42, 124–131 (2015). https://doi.org/10.1016/j.optmat.2014.12.030

    Article  ADS  Google Scholar 

  27. Kandpal, N., Sah, N., Loshali, R., Joshi, R., Prasad, J.: Co-precipitation method of synthesis and characterization of iron oxide nanoparticles. J Sci Ind Res. 73, 87–90 (2014)

    Google Scholar 

  28. Wagner, K.W.: Ann.Phy. 40, 817 (1913)

    Article  ADS  Google Scholar 

  29. Maxwell, J.C.: A Treatise on Electricity and Magnetism. Oxford University Press, New york (1873)

    MATH  Google Scholar 

  30. El Hiti, M.A.: Dielectric behaviour in Mg–Zn ferrites. J Magn Magn Mater. 192, 305–313 (1999). https://doi.org/10.1016/S0304-8853(98)00356-4

    Article  ADS  Google Scholar 

  31. Sagadevan, S., Pal, K., Chowdhury, Z.Z., Podder, J.: CBD progression of Ti-doped ZnO thin film spectroscopic characterizations. J Mater Sci Mater Electron. 28, 1–7 (2017). https://doi.org/10.1007/s10854-017-7568-0

    Article  Google Scholar 

  32. Agrawal, S., Parveen, A., Azam, A.: Structural, electrical, and optomagnetic tweaking of Zn doped CoFe2−xZnxO4−δ nanoparticles. J Magn Magn Mater. 414, 144–152 (2016). https://doi.org/10.1016/j.jmmm.2016.04.059

    Article  ADS  Google Scholar 

  33. Shockley, W., Read, W.T.: Statistics of the recombinations of holes and electrons. Phys Rev. 87, 835–842 (1952). https://doi.org/10.1103/PhysRev.87.835

    Article  ADS  MATH  Google Scholar 

  34. Das, B.P., Mahapatra, P.K., Choudhary, R.N.P.: Effect of Sm 3+ ions on structural, dielectric, and electrical properties of Pb(SnTi)O 3 ceramics. J Mater Sci Mater Electron. 15, 107–114 (2004). https://doi.org/10.1023/B:JMSE.0000005386.88365.19

    Article  Google Scholar 

  35. Abo El Ata, A.M., El Nimr, M.K., Attia, S.M., El Kony, D., Al-Hammadi, A.H.: Studies of AC electrical conductivity and initial magnetic permeability of rare-earth-substituted Li–Co ferrites. J Magn Magn Mater. 297, 33–43 (2006). https://doi.org/10.1016/j.jmmm.2005.01.085

    Article  ADS  Google Scholar 

  36. Farea, A.M.M., Kumar, S., Batoo, K.M., Yousef, A., Lee, C.G.: Alimuddin: Structure and electrical properties of Co0.5CdxFe2.5−xO4 ferrites. J Alloys Compd. 464, 361–369 (2008). https://doi.org/10.1016/j.jallcom.2007.09.126

    Article  Google Scholar 

  37. Salavati-Niasari, M., Sobhani, A., Davar, F.: Synthesis of star-shaped PbS nanocrystals using single-source precursor. J Alloys Compd. 507, 77–83 (2010). https://doi.org/10.1016/j.jallcom.2010.06.062

    Article  Google Scholar 

  38. Bi, H., Li, S., Zhang, Y., Du, Y.: Ferromagnetic-like behavior of ultrafine NiO nanocrystallites. J Magn Magn Mater. 277, 363–367 (2004). https://doi.org/10.1016/j.jmmm.2003.11.017

    Article  ADS  Google Scholar 

  39. Richardson, J.T., Yiagas, D.I., Turk, B., Forster, K., Twigg, M.V.: Origin of superparamagnetism in nickel oxide. J Appl Phys. 70, 6977 (1991). https://doi.org/10.1063/1.349826

    Article  ADS  Google Scholar 

Download references

Funding

This study was funded by Department of Science and Technology (DST) Women Scientist Scheme (WOS-A), Government of India, under grant No. SR/WOS-A/ET-148/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azra Parveen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parveen, A., Agrawal, S. Regulated Electromagnetic Behavior of Transition Metal–Doped Lead Sulfide Pb0.9A0.1S (A: Fe, Co, and Ni) Nanoparticles. J Supercond Nov Magn 33, 1159–1165 (2020). https://doi.org/10.1007/s10948-019-05338-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05338-8

Keywords

Navigation