Structural, Magnetic, and Band Structure Characteristics of the Half-Metal–Type Heusler Alloys Co2VSi1−xAlx (x = 0, 0.25, 0.5, 0.75, and 1)

Abstract

We investigated the structural, magnetic, and band structure properties of the quaternary full Heusler compounds Co2VSi1−xAlx (x = 0, 0.25, 0.5, 0.75, and 1) by using full-potential linearized augmented-plane wave (FP-LAPW) method based on WIEN2k program The structural parameters are computed by the generalized gradient approximations (GGA) while for the electronic and magnetic properties, GGA and modified Becke–Johnson (mBj) schemes are used. It is shown that the equilibrium lattice constants and spin magnetic moment are in good agreement with the experimental values. The density of states (DOS) of Co2VSi and Co2VAl ternary full Heusler compounds shows a half-metallic character while for the Co2VSi1−xAlx (x = 0, 0.25, 0.5, 0.75, and 1), Heusler alloys exhibit a nearly half-metallic behavior with small spin-down at the Fermi level.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Prinz, G.A.: Magnetoelectronics. Science. 282, 1660 (1998)

    Article  Google Scholar 

  2. 2.

    de Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J.: Phys. Rev. Lett. 50, 2024 (1983)

    ADS  Article  Google Scholar 

  3. 3.

    Brown, P.J., Neumann, K.U., Webster, P.J., Ziebeck, K.R.A.: J. Phys. Condens. Matter. 12, 1827 (2000)

    ADS  Article  Google Scholar 

  4. 4.

    Umetsu, R.Y., Okubo, A., Xu, X., Kainuma, R.: J. Alloys Compd. 588, 153 (2014)

    Article  Google Scholar 

  5. 5.

    Kandpal, H.C., Fecher, G.H., Felser, C.: J. Phys. D. Appl. Phys. 40, 1507 (2007)

    ADS  Article  Google Scholar 

  6. 6.

    Block, T., Felser, C., Jakob, G., Ensling, J., Muhling, B., Gutlich, P., Beaumont, V., Studer, F., Cava, R.J.: J. Solid State Chem. 176, 646 (2003)

    ADS  Article  Google Scholar 

  7. 7.

    Bentouaf, A., Hassan, F.H., Reshak, A.H., Aïssa, B.: J. Electron. Mater. 46, 130 (2017)

    ADS  Article  Google Scholar 

  8. 8.

    Bentouaf, A., Hassan, F.H.: J. Magn. Magn. Mater. 381, 65 (2015)

    ADS  Article  Google Scholar 

  9. 9.

    Bentouaf, A., Mebsout, R., Aïssa, B.: J. Alloys Compd. 771, 1062 (2019)

    Article  Google Scholar 

  10. 10.

    Guezlane, M., Baaziz, H., Hassan, F.H., Charifi, Z., Djaballah, Y.: J. Magn. Magn. Mater. 414, 219 (2016)

    ADS  Article  Google Scholar 

  11. 11.

    Amari, S., Dahmane, F., Bin Omran, S., Doumi, B., Yahiaoui, I.E., Tadjer, A., Khenata, R.: J. Korean Phys. Soc. 69, 1462 (2016)

    ADS  Article  Google Scholar 

  12. 12.

    Hohenberg, P., Kohn, W.: Phys. Rev. B. 136, 864 (1964)

    ADS  Article  Google Scholar 

  13. 13.

    Kohn, W., Sham, L.J.: Phys. Rev. 140, A1133 (1965)

    ADS  Article  Google Scholar 

  14. 14.

    P. Blaha, K. Schwarz, G.K.H. Madsen, D. J. Kvasnicka, “WIEN2K, an Augmented Plane Wave + Local orbitals program for calculating crystal properties” (Karlheinz Schwarz, Technische Universität, Wien, Austria, 2001), ISBN 3-9501031 1-2 (2001).

  15. 15.

    Blaha, P., Schwarz, K., Sorantin, P., Tricky, S.B.: Comput. Phys. Commun. 59, 399 (1990)

    ADS  Article  Google Scholar 

  16. 16.

    Schwarz, K., Blaha, P., Madsen, G.K.H.: Comput. Phys. Commun. 147, 71 (2002)

    ADS  Article  Google Scholar 

  17. 17.

    Langreth, D.C., Perdew, J.P.: Phys. Rev. B. 21, 5469 (1980)

    ADS  Article  Google Scholar 

  18. 18.

    Tran, F., Blaha, P.: Phys. Rev. Lett. 102, 226401 (2009)

    ADS  Article  Google Scholar 

  19. 19.

    Fecher, G.H., Kandpal, H.C., Wurmehl, S., Morais, J., Lin, H.-J., Elmers, H.-J., Schonhense, G., Felser, C.: J. Phys. Condens. Matter. 17, 7237 (2005)

    ADS  Article  Google Scholar 

  20. 20.

    Murnaghan, F.D.: Proc. Natl. Acad. Sci. U. S. A. 30, 244 (1944)

    ADS  Article  Google Scholar 

  21. 21.

    Yin, M., Chen, S., Nash, P.: J. Alloys Compd. 577, 49 (2013)

    Article  Google Scholar 

  22. 22.

    Kandpal, H.C., Fecher, G.H., Felser, C.: J. Phys. D. Appl. Phys. 40, 1507 (2007)

    ADS  Article  Google Scholar 

  23. 23.

    Chen, X.-Q., Podloucky, R., Rogl, P.: J. Appl. Phys. 100, 113901 (2006)

    ADS  Article  Google Scholar 

  24. 24.

    Webster, P.J., Ziebeck, K.R.A.: J. Phys. Chem. Solids. 34, 1647 (1973)

    ADS  Article  Google Scholar 

  25. 25.

    Buschow, K.H.J., van Engen, P.C.: J. Magn. Magn. Mater. 25, 90 (1981)

    ADS  Article  Google Scholar 

  26. 26.

    Carbonari, A.W., Saxena, R.N., Pendl Jr., W., Filho, J.M., Attili, R.N., Olzon-Dionysio, M., de Souza, S.D.: Hyperfine Int. 163, 313 (1996)

    Google Scholar 

  27. 27.

    Hofer, G., Stadelmaier, H.H.: Monatsh. Chem. 98, 408 (1967)

    Article  Google Scholar 

  28. 28.

    Kulkova, S.E., Eremeev, S.V., Kakeshita, T., Kulkov, S.S., Rudenski, G.E.: Mater. Trans. 3, 599 (2006)

    Article  Google Scholar 

  29. 29.

    Ziebeck, K.R.A., Webster, P.J.: J. Phys. Chem. Solids. 35, 1 (1974)

    ADS  Article  Google Scholar 

  30. 30.

    Rai, D.P., Sandeep, A., Ghimire Shankar, M.P., Thapa, R.K.: Phys. Scr. 86, 045702 (2012)

    ADS  Article  Google Scholar 

  31. 31.

    Vegard, L.: J. Phys. 5, 393 (1921)

    ADS  Google Scholar 

  32. 32.

    Wurmehl, S., Fecher, G.H., Kandpal, H.C., Ksenofontov, V., Felser, C., Lin, H.J., Morais, J.: Phys. Rev. B. 72, 184434 (2005)

    ADS  Article  Google Scholar 

  33. 33.

    Kanomata, T., Chieda, Y., Endo, K., Okada, H.: Phys. Rev. B. 82, 144415 (2010)

    ADS  Article  Google Scholar 

  34. 34.

    Boochani, A., Khosravi, H., Khodadadi, J., Solaymani, S.: Commun. Theor. Phys. 63, 641 (2015)

    Article  Google Scholar 

  35. 35.

    Rai, D.P., Sandeep, A., Shankar, A., Sakhya, P., Sinha, T.P., Khenata, R., Ghimire, M.P., Thapa, R.K.: Mater. Res. Express. 3, 075022 (2016)

    ADS  Article  Google Scholar 

  36. 36.

    A. H. Reshak, https://doi.org/10.1039/C6RA10226C.

  37. 37.

    Felser C., Fecher G. H. Spintronics from Materials to Devices. Springer Dordrecht Heidelberg New York London, ISBN 978-90-481-3831-9 ISBN 97890481-3832-6 (eBook). https://doi.org/10.1007/978-90-481-3832-6.

  38. 38.

    Khosravi, H., Boochani, A., Rasoliany, G., Solaymaniy, S., Naderiz, S.: Int. J. Modern Phys. B. 31, 1750109 (2017)

    ADS  Article  Google Scholar 

  39. 39.

    Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Phys. Rev. B. 66, 134428 (2002)

    ADS  Article  Google Scholar 

Download references

Funding

This work is supported by the Algerian University research project (CNEPRU) under No. B00L02UN02012015001.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali Bentouaf.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bentouaf, A., Bouras, F., Mebsout, R. et al. Structural, Magnetic, and Band Structure Characteristics of the Half-Metal–Type Heusler Alloys Co2VSi1−xAlx (x = 0, 0.25, 0.5, 0.75, and 1). J Supercond Nov Magn 33, 1177–1186 (2020). https://doi.org/10.1007/s10948-019-05315-1

Download citation

Keywords

  • Ab initio calculation
  • DFT
  • Heusler alloy
  • Half metallic
  • Electronic properties
  • Becke–Johnson (mBj)