Skip to main content
Log in

Peculiarities of Magnetoresistive Properties of Co/Ag/Py Pseudo Spin Valves Under Heat Treatment

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The magnetoresistive properties of pseudo spin valves with the structure Co(5 nm)/Ag(dAg)/Py(30 nm)/Sub (Sub-amorphous glass-ceramic substrate) and Co(30 nm)/Ag(dAg)/Py(5 nm)/Sub, where Py is permalloy Ni80Fe20, dAg = 3–15 nm, was investigated. It is shown that thermal annealing at the temperature of healing defects does not change the structure of both kinds of the investigated pseudo spin valves and improves magnetoresistance. The high-temperature annealing at 750 K leads to the formation disordered solid solution Ag(Co) based on fcc-Ag lattice and affects not only the magnetoresistive curve shape in perpendicular orientation of the magnetic field but also its sign in the case of Co(5)/Ag(dAg)/Py(5)/Sub pseudo spin valve. Besides, the coercivity of the samples with dAg = 6 nm measured in their plane is the most stable within the annealing process at 750 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hirohata, A., Takanashi, K.: Future perspectives for spintronic devices. J. Phys. D. Appl. Phys. 47, 193001 (2014). https://doi.org/10.1088/0022-3727/47/19/193001

    Article  ADS  Google Scholar 

  2. Luby, S., Anwarzai, B., Ác, V., Majkova, E., Senderáka, R.: Pseudo spin-valves with different spacer thickness as sensing elements of mechanical strain. Vacuum. 86, 718–720 (2012). https://doi.org/10.1016/j.vacuum.2011.08.012

    Article  ADS  Google Scholar 

  3. Wang, J.-Q., Malkinski, L.M., Hao, Y., Ross, C.A., Wiemann, J.A., O’Connor, C.J.: Fabrication of pseudo-spin-valves and 100 nm sized periodic elements for magnetic memory application. Mater. Sci. Eng. B. 76, 1–5 (2000). https://doi.org/10.1016/S0921-5107(00)00393-7

    Article  Google Scholar 

  4. He, H., Zhang, Z., Ma, B., Jin, Q.: [Co/Ni]N-based synthetic antiferromagnet with perpendicular anisotropy and its application in pseudo spin valves. IEEE Trans. Magn. 46, 1327–1330 (2010). https://doi.org/10.1109/TMAG.2010.2043503

    Article  ADS  Google Scholar 

  5. Kolesnikov, A.G., Wu, H., Stebliy, M.E., Ognev, A.V., Chebotkevich, L.A., Samardak, A.S., Han, X.: Hybrid magnetic anisotropy [Co/Ni]15/Cu/[Co/Pt]4 spin-valves. J. Magn. Magn. Mater. 449, 271–277 (2018). https://doi.org/10.1016/j.jmmm.2017.10.042

    Article  ADS  Google Scholar 

  6. Liu, E., Swerts, J., Couet, S., Mertens, S., Tomczak, Y., Lin, T., Spampinato, V., Franquet, A., Van Elshocht, S., Kar, G., Furnemont, A., De Boeck, J.: [Co/Ni]-CoFeB hybrid free layer stack materials for high density magnetic random access memory applications. Appl. Phys. Lett. 108, 132405 (2016). https://doi.org/10.1063/1.4945089

    Article  ADS  Google Scholar 

  7. Matthes, P., Albrecht, M.: Pseudo spin valve thin films with crossed magnetic anisotropies. Sensor. Actuat. A. 233, 275–278 (2015). https://doi.org/10.1016/j.sna.2015.07.021

    Article  Google Scholar 

  8. Guth, M., Schmerber, G., Dinia, A., Muller, D., Errahmani, H.: Giant magnetoresistance in Fe and Co based spin valve structures. Phys. Lett. A. 279, 255–260 (2011). https://doi.org/10.1016/S0375-9601(00)00823-9

    Article  ADS  Google Scholar 

  9. Pazukha, I.M., Shuliarenko, D.O., Pylypenko, O.V., Odnodvorets, L.V.: Concentration and heat treatment effects on magnetoresistive properties of Ag-added Ni80Fe20 film systems. J. Magn. Magn. Mater. 485, 89–94 (2019). https://doi.org/10.1016/j.jmmm.2019.04.079

    Article  Google Scholar 

  10. Chen, L., Zhou, Y., Lei, C.: Effect of sputtering parameters and sample size on giant magnetoimpedance effect in NiFe and NiFe/Cu/NiFe films. Mater. Sci. Eng. B. 172, 101–107 (2010). https://doi.org/10.1016/j.mseb.2010.04.026

    Article  Google Scholar 

  11. Urbaniak, M., Stobiecki, F., Szymanski, B.: Stability of perpendicular anisotropy in NiFe/Au/Co/Au multilayers. J. Alloys Compd. 454, 57–60 (2008). https://doi.org/10.1016/j.jallcom.2006.12.138

    Article  Google Scholar 

  12. Kharmouche, S.-M.C.’e., Bourzami, A., Layadi, A., Schmerber, G.: Structural and magnetic properties of evaporated Co/Si(100) and Co/glass thin films. J. Phys. D. Appl. Phys. 37, 2583–2587 (2004). https://doi.org/10.1088/0022-3727/37/18/014

    Article  ADS  Google Scholar 

  13. Ia, M., Lytvynenko, I.M., Pazukha, O.V., Pylypenko, V.V.B.: Structural-phase state, magnetoresistive and magnetic properties of permalloy films. Metallofiz. Noveishie Tekhnol. 37, 1377–1393 (2015). https://doi.org/10.15407/mfint.37.10.1377

    Article  Google Scholar 

  14. Liao, J.H., He, H., Zhang, Z.Z., Ma, B., Jin, Q.Y.: Enhancing of magnetic flux pinning in YBa2Cu3O7−x/CuO granular composites. J. Appl. Phys. 109, 023907 (2011). https://doi.org/10.1063/1.3536476

    Article  ADS  Google Scholar 

  15. Demydenko, M.H., Kuzmenko, A.P., Protsenko, S.I., Fedchenko, O.V.: Correlation between phase-structural state and magnetic characteristics of spin-valve systems based on Fe, Co and Au. J. Nano- Electron. Phys. 5, 04017 (2013)

    Google Scholar 

  16. Bakonyi, I., Péter, L.: Electrodeposited multilayer films with giant magnetoresistance (GMR): Progress and problems. Prog. Mater. Sci. 55, 107–245 (2010). https://doi.org/10.1016/j.pmatsci.2009.07.001

    Article  Google Scholar 

  17. Jiang, Y., Yao, S., Zhang, W.: [Ni80Fe20/Cu/Co/Cu] spin-valve multilayers electrodeposited on NiFe buffer layers. Thin Solid Films. 516, 3210–3216 (2008). https://doi.org/10.1016/j.tsf.2007.12.109

    Article  ADS  Google Scholar 

  18. Liu, S., Yu, G.-H., Yang, M.-Y., Ju, H.-L., Li, B.-H., Chen, X.-B.: Co/Pt multilayer-based pseudo spin valves with perpendicular magnetic anisotropy. Rare Metals. 33, 646–651 (2014). https://doi.org/10.1007/s12598-014-0404-2

    Article  Google Scholar 

  19. Jergel, M., Halahovets, Y., Šiffalovič, P., Végsö, K., Senderák, R., Majková, E., Luby, Š.: Stability of perpendicular anisotropy in NiFe/Au/Co/Au multilayers. J. Alloys Compd. 454, 57–60 (2008). https://doi.org/10.1016/j.jallcom.2006.12.138

    Article  Google Scholar 

  20. Cheshko, I.V., Odnodvorets, L.V., Protsenko, I.Y., Shumakova, M.O., Tkach, O.P.: Physical properties of film alloy based on ferromagnetic and noble metals (review). II. Film materials based on Co and Ag or Au. J. Nano- Electron. Phys. 8, 04028 (2016). https://doi.org/10.21272/jnep.8(4(1)).04028

    Article  Google Scholar 

  21. Gasior, W., Moser, Z., Debski, A.: Heat of formation of FeNi70, FeNi73.5 and FeNi80 ordered alloys from the homogenous region of the FeNi3 phase. J. Alloys Compd. 487, 132–137 (2009). https://doi.org/10.1016/j.jallcom.2009.07.160

    Article  Google Scholar 

  22. Wang, J.Q., Sidney, M.T., Rokitowski, J.D., Kim, N.H., Wang, K.: Magnetorefractive effect in annealed Co/Cu/Co/Fe pseudo-spin-valve thin films. J. Appl. Phys. 103, 07F316 (2008). https://doi.org/10.1063/1.2837631

    Article  Google Scholar 

  23. Freitas, P.P., Silva, F., Oliveira, N.J., Melo, L.V., Costa, L., Almeida, N.: Spin valve sensors. Sensor. Actuat. A: Phys. 81, 2–8 (2000). https://doi.org/10.1016/S0924-4247(99)00159-4

    Article  Google Scholar 

Download references

Funding

This work was funded by the State Program of the Ministry of Education and Science of Ukraine 0119U100777 (2019-2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Pazukha.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazukha, I.M., Koloskova, O.A. & Protsenko, S.I. Peculiarities of Magnetoresistive Properties of Co/Ag/Py Pseudo Spin Valves Under Heat Treatment. J Supercond Nov Magn 33, 1119–1124 (2020). https://doi.org/10.1007/s10948-019-05311-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05311-5

Keywords

Navigation