Skip to main content
Log in

The Needle in the Haystack for Theory of High-Temperature Superconductivity: Negative Nuclear Magnetic Moments

  • Letter
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

A prior theory for high-temperature superconductivity (HTSC) was given based on substances having nuclei of nonzero nuclear magnetic moments (NMM) for strong relativistic reversible, nonclassical scattering of superconducting Cooper pairs beyond 40 K limit for recovery of coupling due to nonzero NMM of atoms in heat bath. Type II and type I superconductors were reasoned to involve relativistic, quantal, fractionally fissing, and fusing nuclei of both positive and negative NMM for more effectively transforming thermal energy to gravitational, magnetic, and quantum energies for effecting superconductivity and superfluidity. On the basis of such model, all high-temperature superconductivity was explained and the critical temperature (Tc), and its variation by elemental and isotopic compositions were reasoned. This prior 2005 theory and model is supported by recent 2018 observations of superconductivity in silver nanoparticles of all negative NMM in gold nano-matrix of all positive NMM. New superconductors of elements and compounds are predicted on basis of enriching isotopes of positive and negative NMM in such substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Little, R.B.: Unconventional nuclear reactions. Posted to ECat World; https://ecatworld.com/2018/04/16/unconventional-nuclear-reactions-reginald-b-little/. (2018)

  2. Little, R. B.: A theory of the relativistic fermionic spinrevorbital. Sciprint.org (2005)

  3. Little, R. B.: On the mechanism of above room temperature superconductivity and superfluidity by relativistic quantum mechanics. arXiv:1412.4012 (2014)

  4. Thapa, D. K. & Pandey, A.: Evidence for superconductivity at ambient temperatures and pressure in Nanostructures. arXiv:1807.08571. (2018)

  5. Drozdov, A.P., Eremets, M.I., Troyan, I.A.: Conventional Superconductivity at 203 Kelvin at High Pressures in the Sulfur Hydride System, Nature 525, p. 73 (2015)

  6. Duan, D., Liu, Y., Tian, F., Li, D., Huang, X., Zhao, A., Yu, H., Liu, B., Tian, W., Cui, T.: Pressure induced metallization of dense (H2S)2H2 with high –Tc superconductivity. Sci. Rep. 4, 6968 (2014)

    Article  ADS  Google Scholar 

  7. Little, R.B.: A theory of the relativistic fermionic spinrevorbital. Int. J. Phys. Sci. 10(1), 1–37 (2015)

    Article  Google Scholar 

  8. Little R. B.: A theory of the relativistic fermionic spinrevorbital. viXra:1212.0011 (2012)

  9. Somayazulu, M., Ahart, M., Mishra, A.K., Geballe, Z.M., Baldini, M., Meng, Y., Struzhkin, V.V., Hemley, R.J.: Evidence for superconductivity above 260 K in lanthunum superhydride at megabar pressures. Phys. Rev. Lett. 122, 027001 (2019)

    Article  ADS  Google Scholar 

  10. Drozdov, A. P., Minkov, V. S., Besedin, S. P., Kong, P. P., Kuzovnikov, M. A., Knyazev, D. A., & Eremet, M. I.: Superconductivity at 215 K in lantunum hydride at high pressures. arXiv:1808.07039 (2018)

  11. Greene, L.H.: Taming Serendipity. Physics World. 24, 41–43 (2011)

    Article  Google Scholar 

  12. Anderson, P.W.: The resonating valence bond state in La2CuO4. Science. 235, 1196 (1987)

    Article  ADS  Google Scholar 

  13. Monthoux, P., Balatsky, A.V., Pines, D.: Toward a theory of high temperature superonductivity in antiferromagnetically correlated cuprate oxides. Phys. Rev. Lett. 67, 3448–3451 (1991)

    Article  ADS  Google Scholar 

  14. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Microscopic theory of superconductivity. Phys. Rev. 106(1), 162–164 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  15. Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Q., Chu, C.W.: Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58(9), 908–910 (1987)

    Article  ADS  Google Scholar 

  16. Briant, C.L., Hall, E.L., Lay, K.W., Tkaczyk, I.E.: Microstructural evolution of the BSCCO-2223 during powder-in-tube processing. J. Mater. Res. 9(11), 2789–2808 (1994)

    Article  ADS  Google Scholar 

  17. Sheng, Z.Z., Hermann, A.M.: Bulk superconductivity at 120 K in the Tl–Ca/Ba–Cu–O system. Nature. 332(6160), 138–139 (1988)

    Article  ADS  Google Scholar 

  18. Schilling, A., Cantoni, M., Guo, J.D., Ott, H.R.: Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature. 363(6424), 56–58 (1993)

    Article  ADS  Google Scholar 

  19. Ihara, H., Hirabayashi, M., Tanino, H., Tokiwa, K., Ozawa, H., Akahama, Y., Kawamura, H.: The resistivity measurement of HP HgBa2Ca2Cu3O8+x and HgBa2Ca3Cu4O10+x Superconductors under High Pressures. Jpn. J. Appl. Phys. 32(2), 12A. (1993)

  20. Little R. B.: Magnetocatalytic adiabatic spin torque orbital transformations for novel chemical and catalytic reaction dynamics: The Little Effect. arXiv:cond-Mat/060871 (2006)

  21. Pia Jensen Ray (Figure 2.4 in Master's thesis, "Structural investigation of La(2-x)Sr(x)CuO(4+y) - Following staging as a function of temperature". NBI/UCPH (2015)

  22. Bednorz, J.G., Muller, K.A.: Possible superconductivity in the Ba-La-Cu-O system. Zeitschrift Fur Physik. 64(2), 189–193 (1986)

    Article  Google Scholar 

  23. Ishida, K., Nakai, Y., Hosono, H.: To what extent iron-pnictide new superconductors have been clarified: a progress report. J. Phys. Soc. Jpn. 78(6), 062001 (2009)

    Article  ADS  Google Scholar 

  24. Wang, Y., Shan, L., Cheng, P., Ren, C., and Wen, H.: Multipe gaps in SmFeAsO0.9F0.1 revealed by point-contact spectroscopy. Superconductor Sci. Technol. 22, 1 (2008)

  25. Shirage, P. M., Miyazawa, K., Kito, H., Eisaki, H., & Iyo, A.: Superconductivity at 43 K at ambient pressure in the iron-based layered compound La1-xYxFeAsOy. Physical Review B. 78 78, 172503 (2008)

  26. Ren, Z-A., Yang, J., Lu, W., Yi, W., Shen, X-L., Li, Z-C., Che, G-C., Dong, X-L., Sun, L-L., Zhou, F. & Zhao, Z.-X.: Superconductivity in iron-based F-doped layered quaternary compound Nd[O1-xFxxFx]FeAs. Europhysics Letters 82, 57002 (2008) (2008)

  27. Shirage, P.M., Miyazawa, K., Kihou, K., Lee, C., Kito, H., Tokiwa, K., Tanaka, Y., Eisaki, H., Iyo, A.: Synthesis of ErFeAsO-based superconductors by the hydrogen doping method. EPL. 92(5), 57011 (2010)

    Article  ADS  Google Scholar 

  28. Shirage, P.M., Kihou, K., Lee, C., Kito, H., Eisaki, H., Iyo, A.: Emergence of superdonductivity in “23522” structure of (Ca3Al2O5-y)(Fe2Pn2) (Pn = As and P). J. Am. Chem. Soc. 133(25), 9630 (2011)

    Article  Google Scholar 

  29. Yang, J., Li, Z., Lu, W., Yi, W., Shen, X., Ren, Z., Che, G., Dong, X., Sun, L., Zhou, F., Znao, Z.: Superconductivity at 53.3K in GdFeAsO1- . Superconduct. Sci. Technol. 21(8), 082001

  30. Private communication between owner of sciprint.org after server went down

  31. Lee, P.A.: From high temperature superconductivity to quantum spin liquid: progress in strong correlation physics. Rep. Prog. Phys. 71, 012501 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reginald B. Little.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Little, R.B. The Needle in the Haystack for Theory of High-Temperature Superconductivity: Negative Nuclear Magnetic Moments. J Supercond Nov Magn 33, 901–910 (2020). https://doi.org/10.1007/s10948-019-05293-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05293-4

Keywords

Navigation