Skip to main content
Log in

Evaluation of Magnetic-Mechanical Coupling Behavior of Multiphase Magnetostrictive Materials

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

An online control by the magnetic method is considered as a nondestructive evaluation approach to detect the variation of the microstructure. The magnetic model used for each phase is based on a magneto-mechanical coupling model, which is characterized, on the one hand, by the influence of applied field on the magnetic susceptibility and magnetostriction; on the other hand, it is characterized by the effect of mechanical stress on magnetization of a material. In order to predict the macroscopic behavior correctly, this model takes not only account for the multiphased state of dual-phase steels for each phase separately but also for the heterogeneity of stress and magnetic field through a self-consistent localization-homogenization scheme. The proposed multiscale approach is based on the hypothesis of domain energy balance, including the localization step, the local constitutive law application, evaluation of the volumetric fraction of martensite, and the homogenization step. Results are discussed and compared with experimental data from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Apicella, V., Clemente, C.S., Davinon, D., et al.: Magneto-mechanical optimization and analysis of a magnetostrictive cantilever beam for energy harvesting [J]. J. Magn. Magn. Mater. 475, 401–407 (2019)

    Article  ADS  Google Scholar 

  2. Zhang, Y.P.: FeGa alloy: magnetostriction material with great potential [J]. J. Magn. Mater. Dev. 49(4), 55–59 (2018)

    Article  ADS  Google Scholar 

  3. Elhajjar, R., Law, C.T., Pegoretti, A.: Magnetostrictive polymer composites: recent advances in materials, structures and properties [J]. Prog. Mater. Sci. 97, 204–229 (2018)

    Article  Google Scholar 

  4. Ausanio, G., Iannotti, V., Ricciardi, E., et al.: Magneto-piezoresistance in magnetorheological elastomers for magnetic induction gradient or position sensors[J]. Sens. Actuators A: Phys. 205, 235–239 (2014)

    Article  Google Scholar 

  5. Wen, S.L., Wang, D.L.: Current research progress on novel FeGa alloy magnetostrictive materials [J]. J Magn Mater Dev. 48(4), 57–62 (2017)

    Google Scholar 

  6. Liu, H., Lv, Z.: Uncertain material properties on wave dispersion behaviors of smart magneto-electro-elastic nanobeams [J]. Compos. Struct. 202, 615–624 (2018)

    Article  Google Scholar 

  7. Gao, W.X., Brennan, R., Hu, Y., et al.: Energy transduction ferroic materials [J]. Mater. Today. 21, 771–784 (2018)

    Article  Google Scholar 

  8. Liang, Y.R., Zheng, X.J.: Experimental research on magneto-thermo-mechanical dynamic performance of Terfenol-D [J]. J Lanzhou Univ (Natural Science Edition). 46(6), 112–118 (2010)

    Google Scholar 

  9. Wang, X.J., Huang, Y., Cai, T.: Homogenization of macroscopic magneto-elastic behavior based on a microscopic model[J]. J. Supercond. Nov. Magn. 26(8), 2791–2794 (2013)

    Article  Google Scholar 

  10. Wang, X.J., Hubert, O., He, S., et al.: Reversible magneto-mechanical modeling of heterogeneous media[J]. J. Supercond. Nov. Magn. 27, 2049–2058 (2014)

    Article  Google Scholar 

  11. Engdahl, G., Svensson, L.: Simulation of the magnetostrictive performance of terfenol-D in mechanical devices [J]. J. Appl. Phys. 63(8), 3924–3926 (1988)

    Article  ADS  Google Scholar 

  12. Delince, F., Genon, A., Gillard, J.M.: Numerical computation of the magnetostrictive effect in ferromagnetic materials [J]. J. Appl. Phys. 69(72), 5794–5710 (1991)

    Article  ADS  Google Scholar 

  13. Karim, A., Mondher, B.: 3D FEM of magnetostriction phenomena using coupled constitutive laws [J]. Int. J. Appl. Electromagn. Mech. 19(39), 367–371 (2004)

    Google Scholar 

  14. Cstrman, G.P., Mitrovic, M.: Nonlinear constitutive relations for magnetostrictive materials with applications to 1-D problems[J]. J. Intell. Mater. Syst. Struct. 6, 673–683 (1996)

    Google Scholar 

  15. Jiles, D.C., Atherton, D.L.: Theory of ferromagnetic hysteresis (invited) [J]. J. Appl. Phys. 55(6), 2115–2120 (1984)

    Article  ADS  Google Scholar 

  16. Jiles, D.C., Atherton, D.L.: Theory of ferromagnetic hysteresis[J]. J. Magn. Magn. Mater. 61(1), 48–60 (1986)

    Article  ADS  Google Scholar 

  17. Sablik, M.J., Burkhardt, G.L., Kwun, H., et al.: A model for the effect of stress on the low-frequency harmonic content of the magnetic induction in ferromagnetic materials [J]. J. Appl. Phys. 63(8), 3930–3932 (1988)

    Article  ADS  Google Scholar 

  18. Sablik, M.J., Jiles, D.C.: Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis [J]. IEEE Trans. Magn. 29(30), 2113–2123 (1993)

    Article  ADS  Google Scholar 

  19. Jiles, D.C.: Theory of the magnetomechanical effect [J]. J. Phys. D. Appl. Phys. 28, 1537–1546 (1995)

    Article  ADS  Google Scholar 

  20. Dapino M J. Nonlinear and hysteretic magnetomechanical model for magnetostrictive transducers [D]. Ames: Iowa State University, 1999

  21. Dapino, M.J., Smith, R.C., Faidley, L.E., et al.: A coupled structural-magnetic strain and stress model for magnetostrictive transducers [J]. J. Intell. Mater. Syst. Struct. 11(4), 135–152 (2000)

    Article  Google Scholar 

  22. Zheng, X.J., Liu, X.E.: A nonlinear constitutive model for Terfenol-D rods [J]. J. Appl. Phys. 97, 053901-1-6 (2005)

    ADS  Google Scholar 

  23. Zheng, X.J., Sun, L.: A nonlinear constitutive model of magnetothermo-mechanical coupling for giant magnetostrictive materials [J]. J. Appl. Phys. 100(6), 063906-1-6 (2006)

    Article  ADS  Google Scholar 

  24. Sun L. Constitutive theory of giant magnetostrictive materials[D]. Lanzhou: Lanzhou Univercity, 2007

  25. Zhou H M, Zhou Y H, Zheng X J, et al. A general 3-D nonlinear magnetostrictive constitutive model for soft ferromagnetic materials[J]. J. Magn. Magn. Mater., 2009, 321(4): 281–290

  26. Jin, K.: Theoretical research on multi-field coupling nonlinear mechanics behavior of giant magnetostrictive materials[J]. Journal of Solid Mechanics. 33(5), 548–556 (2012)

    ADS  Google Scholar 

  27. Wang, L., Wang, B.W., Wang, Z.H., et al.: Magneto-thermo mechanical characterization of giant magnetostrictive materials[J]. Rare Metals. 32(5), 486–489 (2013)

    Article  Google Scholar 

  28. Daniel L, Hubert O, An analytical model for the delta effect in magnetic materials[J]. EPJ Applied Physics Journal, 2009, 45 (3): 3101–3111

  29. Daniel, L., Hubert, O., Buiron, N., et al.: Reversible magneto-elastic behavior: a multiscale approach[J]. J. Mech. Phys.Solids. 56(3), 1018–1042 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  30. Buiron N, Hirsinger L, Billardon R. A multiscale model for magneto-elastic couplings[J] J. Phys. IV, 1999, 9: 187–196

  31. Buiron, N., Hirsinger, L., Billardon, R.: Influence of the texture of soft magnetic materials on their magneto-elastic behaviour[J]. J. Phys. IV. 11, 373–380 (2001)

    Google Scholar 

  32. Néel, L.: Les lois de l’aimantation et de la subdivision en domaines élémentaires d’un monocristal de fer[J]. J. Phys. Radium. 5(11), 241–251 (1944)

    Article  Google Scholar 

  33. Chikazumi, S.: Physics of Ferromagnetism. Clarendon Press, Oxford (1997)

    Google Scholar 

  34. Wang, X.J., Huang, Y.: Evaluation of Martensite faction volume in DP steels: energetical and multiscale methods[J]. J Magn Mater Devices. 45(01), 18–21 (2014)

    ADS  Google Scholar 

  35. Kuruzar, M.E., Cullity, B.D.: The magnetostriction of iron under tensile and compressive stress[J]. Int J Magn. 1(4), 323–325 (1971)

    Google Scholar 

Download references

Funding

The presented work was supported by the Fundamental Research Funds for the Central Universities (lzujbky-2019-22) and the Overseas Personnel Science and Technology Activities Project Merit Funding ((2016) 176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Huang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Huang, Y. & Michelitsch, T.M. Evaluation of Magnetic-Mechanical Coupling Behavior of Multiphase Magnetostrictive Materials. J Supercond Nov Magn 33, 1231–1239 (2020). https://doi.org/10.1007/s10948-019-05289-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05289-0

Keywords

Navigation