Skip to main content
Log in

The Itinerancy and Interactions of the Linear Strings of Holes in Copper Oxide Superconductors

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Here I present a new model for the itinerancy of the strings of holes in the cuprate HTSC. The model assumes various scenarios with respect to the order of the holes hopping and evaluates the weighting parameters for the different scenarios. The new model still results in the aggregation of holes into strings, but yields a spectral distribution for the itinerancy rates of the strings. From this distribution, I infer a spectral distribution for the magnetic interaction between the strings, which suggests also a spectral distribution for the pseudogap parameter, and some relevant experimental functions. Apart from these distributions, the basic assumptions of former relevant theories remain intact. Such assumptions are the existence of the anti-ferromagnetic phases A and B, the basic structure of the pseudogap ground state, the excitation operators, and the field. The ground state and the field are basically divided into two bands, the gapless low-energy band and the high-energy band. Due to the wide distributions, the bands may be partially overlapped.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Damascelli, A., Hussain, Z., Shen, Z.X.: Rev. Mod. Phys. 75, 473 (2003)

    Article  ADS  Google Scholar 

  2. Fisher, O., et al.: Mod. Phys. 79, 353 (2007)

    Article  ADS  Google Scholar 

  3. Tranquada, J. in: Schriffer, J.R., Brooks, J. S. (eds.) Handbook of high temperature superconductivity, vol. 6, pp 257–298. Springer, Berlin (2007)

  4. Mott, N. F. : in High temperature superconductivity, Proc. Of the 39th Scottish Universities Summer School in Physics, eds. Tunstall, D. P. and Barford, W. pp 271–294. Adam Hilger, Bristol (1991)

  5. Anderson, P.W.: Science. 235, 1196 (1987)

    Article  ADS  Google Scholar 

  6. Dayan, M.: J. Supercond. Nov. Magn. 17, 487 (2004)

    Article  ADS  Google Scholar 

  7. Dayan, M.: J. Supercond. Nov. Magn. 17, 739 (2004)

    Article  ADS  Google Scholar 

  8. Dayan, M.: J. Supercond. Nov. Magn. 20, 239 (2007)

    Article  Google Scholar 

  9. Dayan, M.: J. Supercond. Nov. Magn. 22, 517 (2009)

    Article  Google Scholar 

  10. Dayan, M.: Cond. Mat. arXiv, 1011.3206 (2010)

    ADS  Google Scholar 

  11. Dayan, M.: J. Supercond. Nov. Magn. 26, 2919 (2013)

  12. Fulde, P.: Elect. Corr. Mol. Sol. 12.6, 334–340 (1995) and references therein

    Google Scholar 

  13. Vojta, M., Rosch, O.: Phys. Rev. B77, 094504 (2008)

    Article  ADS  Google Scholar 

  14. White, S.R., Scalapino, D.J.: Phys. Rev. B79, 220504 (2009)

    Article  ADS  Google Scholar 

  15. Tranquada, J.M., et al.: Nature. 375, 561 (1995)

    Article  ADS  Google Scholar 

  16. Kampf, A.P., Scalapino, D.J., White, S.R.: Phys. Rev. B64, 052509 (2001)

    Article  ADS  Google Scholar 

  17. Tranquada, J.M., et al.: Nature. 429, 534 (2004)

    Article  ADS  Google Scholar 

  18. Hanaguri, T., et al.: Nature. 430, 1001 (2004)

    Article  ADS  Google Scholar 

  19. McElroy, K., et al.: Phys. Rev. Lett. 94, 197005 (2005)

    Article  ADS  Google Scholar 

  20. Kohsaka, Y., et al.: Science. 315, 1380 (2007)

    Article  ADS  Google Scholar 

  21. Cheong, S.-W., et al.: Phys. Rev. Lett. 67, 1791 (1991)

    Article  ADS  Google Scholar 

  22. Thurston, T.R., et al.: Phys. Rev. B46, 9128 (1992)

    Article  ADS  Google Scholar 

  23. Lake, B., et al.: Nature. 400, 43 (1999)

    Article  ADS  Google Scholar 

  24. Yamada, K., et al.: Phys. Rev. B57, 6165 (1998)

    Article  ADS  Google Scholar 

  25. Fujita, M., et al.: Phys. Rev. B70, 104517 (2004)

    Article  ADS  Google Scholar 

  26. Ino, A., et al.: Phys. Rev. B62, 4137 (2000)

    Article  ADS  Google Scholar 

  27. Ino, A., et al.: Phys. Rev. B65, 094504 (2002)

    Article  ADS  Google Scholar 

  28. Yoshida, T., et al.: Phys. Rev. B74, 224510 (2006)

    Article  ADS  Google Scholar 

  29. He, R.-H., et al.: Science. 331, 1579 (2011)

    Article  ADS  Google Scholar 

  30. Kondo, T., et al.: Phys. Rev. B80, 100505 (2009)

    Article  ADS  Google Scholar 

  31. Gurvitch, M., et al.: Phys. Rev. Lett. 63, 1008 (1989)

    Article  ADS  Google Scholar 

  32. Valles, J.M., et al.: Phys. Rev. B44, 11986 (1991)

    Article  ADS  Google Scholar 

  33. Gurvitch, M., et al.: Phys. Rev. Lett. 89, 087002 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe Dayan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Moshe Dayan retired from Ben-Gurion University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dayan, M. The Itinerancy and Interactions of the Linear Strings of Holes in Copper Oxide Superconductors. J Supercond Nov Magn 33, 981–993 (2020). https://doi.org/10.1007/s10948-019-05267-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05267-6

Keywords

Navigation