Trapping of Magnetic Flux in Bi-2223 Ceramic Superconductors Doped with α-Al2O3 Nanoparticles

  • M. Hernández-Wolpez
  • P. R. Gallart-Tauler
  • I. García-Fornaris
  • E. Govea-Alcaide
  • E. Pérez-Tijerina
  • R. F. Jardim
  • P. MunéEmail author
Original Paper


By combining experimental results and a simple model, we offer here an explanation for the role played by the low-angle grain boundaries and the doping with α-Al2O3 nanoparticles in the trapping of the magnetic flux in Bi1.65Pb0.35Sr2Ca2Cu3O10+δ (Bi-2223) ceramic samples. Our model correlates the size of the nanoparticles, properties of the superconducting matrix, and the magnetic flux trapped at the intragranular planar defects, the so-called Abrikosov-Josephson vortices. The results indicate that the role played by the doping with α-Al2O3 nanoparticles is to pin the AJ vortices at the grain boundaries with misorientation angles \(\theta \sim 10^{\circ }\). We also argue that a similar procedure for identifying conditions for the trapping of the magnetic flux may be applied to other superconducting materials doped with non-magnetic nanoparticles.


Bi-based superconductors Trapped flux Doping with nanoparticles Low-angle grain boundaries 



The authors are indebted to Prof. E. Martínez-Guerra and César Cutberto Leyva Porras, from Centro Investigación en Materiales Avanzados S. C., Unidad Monterrey-PIIT and Chihuahua, respectively, for the HRTEM images. We also thank Prof. F. Solís-Pomar, from Centro de Investigación en Ciencias Físico-Matemáticas, FCFM, UANL, Monterrey, Nuevo León, México, for the AFM images. Finally, the authors would like to express their deepest gratitude to Prof. A. Gurevich for several important suggestions.

Funding Information

This work was supported by Brazil’s agencies FAPESP (Grant nos. 13/07296-2 and 14/19245-6), CNPq, and CAPES under Grant CAPES/MES no. 104/10.


  1. 1.
    Gurevich, A. : Nonlocal Josephson electrodynamics and pinning in superconductors. Phys. Rev. B 46, R3187 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    Gurevich, A., Rzchowski, M. S., Daniels, G., Patnaik, S., Hinaus, B. M., Carrillo, F., Tafuri, F., Larbalestier, D.: Flux flow of Abrikosov-Josephson vortices along grain boundaries in high temperature superconductors. Phys. Rev. Lett. 88, 97001 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    Hänisch, J., Attenberger, A., Holzapfel, B., Shultz, L.: Electrical transport properties of B i 2 S r 2 C a 2 C u 3 O 10+δ thin film [001] tilt grain boundaries. Phys. Rev. B 65, 052507 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Held, R., Schneider, C. W., Mannhart, J., Allard, L. F., More, K. L., Goyal, A.: Low-angle grain boundaries in Y B a 2 C u 3 O 7−δ with high critical current densities. Phys. Rev. B 79, 014515 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Hernández-Wolpez, M., Cruz-García, A., Vázquez-Robaina, O., Jardim, R. F., Muné, P.: Penetration and trapping of the magnetic flux in planar defects of B i 1.65 P b 0.35 S r 2 C a 2+x C u 3+x O y superconductor. Phys. C 525–526, 84 (2016)CrossRefGoogle Scholar
  6. 6.
    Hernández-Wolpez, M., Cruz-García, A., Jardim, R. F., Muné, P.: Intragranular defects and Abrikosov-Josepson vortices in Bi-2223 bulk superconductors. J. Mater Sci:Mater Electron. 28, 15246 (2017)Google Scholar
  7. 7.
    Altshuler, E., García, S., Barroso, J.: Flux trapping in transport measurements of Y B a 2 C u 3 O 7−x superconductors A fingerprint of intragrain properties. Phys. C 177, 61 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    Muné, P., Govea-Alcaide, R. F.: Jardim. Influence of the compacting pressure on the dependence of the critical current with magnetic field in polycrystalline (B iP b)2 S r 2 C a 2 C u 3 O x. Phys. C 384, 491 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Hernández-Wolpez, M., García-Fornaris, I., Govea-Alcaide, E., Jardim, R. F., Muné, P.: Some effects of the doping α-Al2 O 3 nanoparticles in the transport properties of B i 1.65 P b 0.35 S r 2 C a 2+x C u 3+x O y ceramic superconductors. Rev. Mex. Fís. 64, 127 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hernández-Wolpez, M., Fernández-Gamboa, J. R., García-Fornaris, I., Govea-Alcaide, E., Pérez-Tijerina, E., Jardim, R. F., Muné, P.: Voltage relaxation and Abrikosov-Josepson vortices in Bi-2223 superconductors doped with α,-Al2 O 3 nanoparticles. J. Mater Sci:Mater Electron. 29, 5926 (2018)Google Scholar
  11. 11.
    Li, M. Y., Han, Z.: The effect of lead-rich phases on the microstructure and properties of (Bi, Pb)-2223/Ag tapes. Supercond. Sci. Technol. 20, 843 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Ghattas, A., Annabi, M., Zouaoui, M., Azzouz, F. B., Salem, M. B.: Flux pinning by Al-based nano particles embedded in polycrystalline (Bi, Pb)-2223 superconductors. Phys. C 468, 31 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Horcas, I., Fernández, R., Gómez-Rodríguez, J. M., Colchero, J., Gómez-Herrero, J., Baroet, A. M.: WSxM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Hilgenkamp, H., Mannhart, J.: Grain boundaries in high-Tc, superconductors. Rev. Mod. Phys. 74, 485 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    Majoros, M., Martini, L., Zainella, S.: Lower critical magnetic field Hc1 and intergranular coupling of Bi-2223/Ag concentric tapes. Phys. C 282, 2205 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    Hu, C.-R.: Numerical constants for isolated vortices in superconductors. Phys. Rev. B 6, 1756 (1972)ADSCrossRefGoogle Scholar
  17. 17.
    This value of γ 2 = 0.423 differs from the incorrect value γ 2 = 1.118 of (Ref. [1])Google Scholar
  18. 18.
    Gurevich, A.: Nonlinear viscous motion of vortices in Josephson contacts. Phys. Rev. B 48, R12857 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    Orlando, T. P., Delin, K. A.: Foundations of applied superconductivity. Adisson- Wesley, New York (1991)CrossRefGoogle Scholar
  20. 20.
    Yavuz, S., Bilgili, O., Kocabas, K.: Effects of superconducting parameters of SnO2 nanoparticles addition on (Bi, Pb)-2223 phase. J. Mater. Sci: Mater. Electron. 27, 4526 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Física Universidad de CamagüeyCamagüeyCuba
  2. 2.Departamento de FísicaUniversidad de OrienteSantiago de CubaCuba
  3. 3.Departamento de Matemática-Física, Facultad de Ciencias Informáticas, Naturales y ExactasUniversidad de GranmaBayamoCuba
  4. 4.Departamento de FísicaUniversidade Federal do AmazonasManausBrazil
  5. 5.Centro de Investigación en Ciencias Físico-Matemáticas, FCFM, UANLMonterreyMéxico
  6. 6.Instituto de FísicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations