Advertisement

Effect of the Additional Se Layer on the Electronic Structure of Iron-Based Superconductor FeSe/SrTiO3

  • L. V. Tikhonova
  • M. M. KorshunovEmail author
Original Paper

Abstract

We use density functional theory to study the structure and the band structure of the monolayer FeSe deposited on the SrTiO3 substrate with the additional layer of Se between them. The top of the SrTiO3 is formed by the double TiOx layer with and without oxygen vacancies. Several structures with different arrangements of the additional Se atoms above the double TiOx layer are considered. Equilibrium structures were found, and the band structures for them were obtained. Near the Γ = (0,0,0) point of the Brillouin zone, the hole Fermi surface pockets persist and, additionally, an electron pocket appears. Thus, neither the presence of the additional Se layer nor the oxygen vacancies in the double TiOx layer lead to the sinking of hole bands below the Fermi level near the Γ point. The necessity to include the strong electronic correlations into account is discussed.

Keywords

Fe-based superconductors Monolayer FeSe SrTiO3 Density functional theory 

Notes

Acknowledgments

The authors would like to thank Information Technology Center, Novosibirsk State University, Institute of Computational Modelling of SB RAS, Krasnoyarsk, for providing the access to supercomputer facilities, and Irkutsk Supercomputer Center of SB RAS for providing the access to HPC-cluster “Akademik V.M. Matrosov” (Irkutsk Supercomputer Center of SB RAS, Irkutsk: ISDCT SB RAS; http://hpc.icc.ru, accessed 13.05.2019).

References

  1. 1.
    Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: . J. Am. Chem. Soc. 130(11), 3296 (2008).  https://doi.org/10.1021/ja800073m Google Scholar
  2. 2.
  3. 3.
    Izyumov, Y.A., Kurmaev, E.Z.: . Phys. Usp. 51(12), 1261 (2008).  https://doi.org/10.1070/PU2008v051n12ABEH006733. https://ufn.ru/en/articles/2008/12/d/ ADSGoogle Scholar
  4. 4.
  5. 5.
    Johnston, D.C.: . Adv. Phys. 59(6), 803 (2010).  https://doi.org/10.1080/00018732.2010.513480 ADSGoogle Scholar
  6. 6.
    Paglione, J., Greene, R.L.: . Nat. Phys. 6(9), 645 (2010).  https://doi.org/10.1038/nphys1759 Google Scholar
  7. 7.
    Lumsden, M.D., Christianson, A.D.: . J. Phys.: Condens. Matter 22 (20), 203203 (2010). http://stacks.iop.org/0953-8984/22/i=20/a=203203 ADSGoogle Scholar
  8. 8.
    Stewart, G.R.: . Rev. Mod. Phys. 83, 1589 (2011).  https://doi.org/10.1103/RevModPhys.83.1589 ADSGoogle Scholar
  9. 9.
  10. 10.
    Hirschfeld, P.J., Korshunov, M.M., Mazin, I.I.: . Reports on Progress in Physics 74(12), 124508 (2011). http://stacks.iop.org/0034-4885/74/i=12/a=124508 ADSGoogle Scholar
  11. 11.
    Berk, N.F., Schrieffer, J.R.: . Phys. Rev. Lett. 17, 433 (1966).  https://doi.org/10.1103/PhysRevLett.17.433 ADSGoogle Scholar
  12. 12.
    Chubukov, A.: . Ann. Rev. Condens. Matter Phys. 3(1), 57 (2012).  https://doi.org/10.1146/annurev-conmatphys-020911-125055 Google Scholar
  13. 13.
  14. 14.
    Korshunov, M.M., Eremin, I.: . Phys. Rev. B 78, 140509 (2008).  https://doi.org/10.1103/PhysRevB.78.140509 ADSGoogle Scholar
  15. 15.
    Maier, T.A., Scalapino, D.J.: . Phys. Rev. B 78, 020514 (2008).  https://doi.org/10.1103/PhysRevB.78.020514 ADSGoogle Scholar
  16. 16.
    Maier, T.A., Graser, S., Scalapino, D.J., Hirschfeld, P.: . Phys. Rev. B 79, 134520 (2009).  https://doi.org/10.1103/PhysRevB.79.134520 ADSGoogle Scholar
  17. 17.
    Korshunov, M.M., Shestakov, V.A., Togushova, Y.N.: . Phys. Rev. B 94, 094517 (2016).  https://doi.org/10.1103/PhysRevB.94.094517 ADSGoogle Scholar
  18. 18.
    Korshunov, M.M.: . Phys. Rev. B 98, 104510 (2018).  https://doi.org/10.1103/PhysRevB.98.104510 ADSGoogle Scholar
  19. 19.
    Akbari, A., Eremin, I., Thalmeier, P.: . Phys. Rev. B 81, 014524 (2010).  https://doi.org/10.1103/PhysRevB.81.014524 ADSGoogle Scholar
  20. 20.
    Wang, F., Zhai, H., Lee, D.H.: . Phys. Rev. B 81, 184512 (2010).  https://doi.org/10.1103/PhysRevB.81.184512 ADSGoogle Scholar
  21. 21.
    Akbari, A., Knolle, J., Eremin, I., Moessner, R.: . Phys. Rev. B 82, 224506 (2010).  https://doi.org/10.1103/PhysRevB.82.224506 ADSGoogle Scholar
  22. 22.
    Hirschfeld, P.J., Altenfeld, D., Eremin, I., Mazin, I.I.: . Phys. Rev. B 92, 184513 (2015).  https://doi.org/10.1103/PhysRevB.92.184513 ADSGoogle Scholar
  23. 23.
    Mazin, I.I., Singh, D.J., Johannes, M.D., Du, M.H.: . Phys. Rev. Lett. 101, 057003 (2008).  https://doi.org/10.1103/PhysRevLett.101.057003 ADSGoogle Scholar
  24. 24.
    Chubukov, A.V., Efremov, D.V., Eremin, I.: . Phys. Rev. B 78, 134512 (2008).  https://doi.org/10.1103/PhysRevB.78.134512 ADSGoogle Scholar
  25. 25.
    Kuroki, K., Onari, S., Arita, R., Usui, H., Tanaka, Y., Kontani, H., Aoki, H.: . Phys. Rev. Lett. 101, 087004 (2008).  https://doi.org/10.1103/PhysRevLett.101.087004 ADSGoogle Scholar
  26. 26.
    Graser, S., Maier, T., Hirschfeld, P., Scalapino, D.: . J. Phys. 11(2), 025016 (2009). http://stacks.iop.org/1367-2630/11/i=2/a=025016 Google Scholar
  27. 27.
    Maiti, S., Korshunov, M.M., Maier, T.A., Hirschfeld, P.J., Chubukov, A.V.: . Phys. Rev. Lett. 107, 147002 (2011).  https://doi.org/10.1103/PhysRevLett.107.147002 ADSGoogle Scholar
  28. 28.
    Maiti, S., Korshunov, M.M., Maier, T.A., Hirschfeld, P.J., Chubukov, A.V.: . Phys. Rev. B 84, 224505 (2011).  https://doi.org/10.1103/PhysRevB.84.224505 ADSGoogle Scholar
  29. 29.
    Maiti, S., Korshunov, M.M., Chubukov, A.V.: . Phys. Rev. B 85, 014511 (2012).  https://doi.org/10.1103/PhysRevB.85.014511 ADSGoogle Scholar
  30. 30.
    Classen, L., Xing, R.Q., Khodas, M., Chubukov, A.V.: . Phys. Rev. Lett. 118, 037001 (2017).  https://doi.org/10.1103/PhysRevLett.118.037001 ADSGoogle Scholar
  31. 31.
    Kontani, H., Onari, S.: . Phys. Rev. Lett. 104, 157001 (2010).  https://doi.org/10.1103/PhysRevLett.104.157001 ADSGoogle Scholar
  32. 32.
    Onari, S., Kontani, H.: . Phys. Rev. Lett. 109, 137001 (2012).  https://doi.org/10.1103/PhysRevLett.109.137001 ADSGoogle Scholar
  33. 33.
    Qing-Yan, W., Zhi, L., Wen-Hao, Z., Zuo-Cheng, Z., Jin-Song, Z., Wei, L., Hao, D., Yun-Bo, O., Peng, D., Kai, C., Jing, W., Can-Li, S., Ke, H., Jin-Feng, J., Shuai-Hua, J., Ya-Yu, W., Li-Li, W., Xi, C., Xu-Cun, M., Qi-Kun, X.: . Chin. Phys. Lett. 29(3), 037402 (2012). http://stacks.iop.org/0256-307X/29/i=3/a=037402 ADSGoogle Scholar
  34. 34.
    Zhang, Z., Wang, Y.H., Song, Q., Liu, C., Peng, R., Moler, K., Feng, D., Wang, Y.: . Sci. Bullet. 60(14), 1301 (2015).  https://doi.org/10.1007/s11434-015-0842-8. http://www.sciencedirect.com/science/article/pii/S2095927316303711 Google Scholar
  35. 35.
    Ge, J.F., Liu, Z.L., Liu, C., Gao, C.L., Qian, D., Xue, Q.K., Liu, Y., Jia, J.F.: . Nat. Mater 14(3), 285 (2015).  https://doi.org/10.1038/nmat4153 ADSGoogle Scholar
  36. 36.
    Zhao, L., Liang, A., Yuan, D., Hu, Y., Liu, D., Huang, J., He, S., Shen, B., Xu, Y., Liu, X., Yu, L., Liu, G., Zhou, H., Huang, Y., Dong, X., Zhou, F., Liu, K., Lu, Z., Zhao, Z., Chen, C., Xu, Z., Zhou, X.J.: . Nat. Commun. 7, 1 (2016).  https://doi.org/10.1038/ncomms10608 ADSGoogle Scholar
  37. 37.
  38. 38.
    Lee, J.J., Schmitt, F.T., Moore, R.G., Johnston, S., Cui, Y.T., Li, W., Yi, M., Liu, Z.K., Hashimoto, M., Zhang, Y., Lu, D.H., Devereaux, T.P., Lee, D.H., Shen, Z.X.: . Nature 515, 245 (2014).  https://doi.org/10.1038/nature13894 ADSGoogle Scholar
  39. 39.
    Coh, S., Cohen, M.L., Louie, S.G.: . J. Phys. 17(7), 073027 (2015).  https://doi.org/10.1088/1367-2630/17/7/073027 Google Scholar
  40. 40.
    Gor’kov, L.P.: . Phys. Rev. B 93, 060507 (2016).  https://doi.org/10.1103/PhysRevB.93.060507 ADSGoogle Scholar
  41. 41.
    Kulić, M.L., Dolgov, O.V.: . J. Phys. 19(1), 013020 (2017).  https://doi.org/10.1088/1367-2630/19/1/013020 Google Scholar
  42. 42.
    Kang, J., Fernandes, R.M.: . Phys. Rev. Lett. 117, 217003 (2016).  https://doi.org/10.1103/PhysRevLett.117.217003 ADSGoogle Scholar
  43. 43.
    Fernandes, R.M., Chubukov, A.V.: . Rep. Progress Phys. 80 (1), 014503 (2017). http://stacks.iop.org/0034-4885/80/i=1/a=014503 ADSGoogle Scholar
  44. 44.
    Kang, J., Fernandes, R.M., Chubukov, A.: . Phys. Rev. Lett. 120, 267001 (2018).  https://doi.org/10.1103/PhysRevLett.120.267001 ADSGoogle Scholar
  45. 45.
    Yamakawa, Y., Kontani, H.: . Phys. Rev. B 96, 045130 (2017).  https://doi.org/10.1103/PhysRevB.96.045130 ADSGoogle Scholar
  46. 46.
    Kreisel, A., Andersen, B.M., Sprau, P.O., Kostin, A., Davis, J.C.S., Hirschfeld, P.J.: . Phys. Rev. B 95, 174504 (2017).  https://doi.org/10.1103/PhysRevB.95.174504 ADSGoogle Scholar
  47. 47.
    Chen, X., Maiti, S., Linscheid, A., Hirschfeld, P.J.: . Phys. Rev. B 92, 224514 (2015).  https://doi.org/10.1103/PhysRevB.92.224514 ADSGoogle Scholar
  48. 48.
    Du, Z., Yang, X., Altenfeld, D., Gu, Q., Yang, H., Eremin, I., Hirschfeld, P., Mazin, I.I., Lin, H., Zhu, X., Wen, H.H.: . Nat. Phys. 14, 134 (2017).  https://doi.org/10.1038/nphys4299 Google Scholar
  49. 49.
    Liu, C., Wang, Z., Gao, Y., Liu, X., Liu, Y., Wang, Q.H., Wang, J.: . Phys. Rev. Lett. 123, 036801 (2019).  https://doi.org/10.1103/PhysRevLett.123.036801 ADSGoogle Scholar
  50. 50.
    Jandke, J., Yang, F., Hlobil, P., Engelhardt, T., Rau, D., Zakeri, K., Gao, C., Schmalian, J., Wulfhekel, W.: . Phys. Rev. B 100, 020503 (2019).  https://doi.org/10.1103/PhysRevB.100.020503 ADSGoogle Scholar
  51. 51.
    Liu, D., Zhang, W., Mou, D., He, J., Ou, Y.B., Wang, Q.Y., Li, Z., Wang, L., Zhao, L., He, S., Peng, Y., Liu, X., Chen, C., Yu, L., Liu, G., Dong, X., Zhang, J., Chen, C., Xu, Z., Hu, J., Chen, X., Ma, X., Xue, Q., Zhou, X.J.: . Nat. Commun. 3, 931 (2012).  https://doi.org/10.1038/ncomms1946 ADSGoogle Scholar
  52. 52.
    Tan, S., Zhang, Y., Xia, M., Ye, Z., Chen, F., Xie, X., Peng, R., Xu, D., Fan, Q., Xu, H., Jiang, J., Zhang, T., Lai, X., Xiang, T., Hu, J., Xie, B., Feng, D.: . Nat Mater 12(7), 634 (2013)ADSGoogle Scholar
  53. 53.
    Liu, K., Lu, Z.Y., Xiang, T.: . Phys. Rev. B 85, 235123 (2012).  https://doi.org/10.1103/PhysRevB.85.235123 ADSGoogle Scholar
  54. 54.
    Li, F., Zhang, Q., Tang, C., Liu, C., Shi, J., Nie, C., Zhou, G., Li, Z., Zhang, W., Song, C.L., He, K., Ji, S., Zhang, S., Gu, L., Wang, L., Ma, X.C., Xue, Q.K.: . 2D Mater. 3(2), 024002 (2016).  https://doi.org/10.1088/2053-1583/3/2/024002 Google Scholar
  55. 55.
    Zou, K., Mandal, S., Albright, S.D., Peng, R., Pu, Y., Kumah, D., Lau, C., Simon, G.H., Dagdeviren, O.E., He, X., Bozović, I., Schwarz, U.D., Altman, E.I., Feng, D., Walker, F.J., Ismail-Beigi, S., Ahn, C.H.: . Phys. Rev. B 93, 180506 (2016).  https://doi.org/10.1103/PhysRevB.93.180506 ADSGoogle Scholar
  56. 56.
    Bang, J., Li, Z., Sun, Y.Y., Samanta, A., Zhang, Y.Y., Zhang, W., Wang, L., Chen, X., Ma, X., Xue, Q.K., Zhang, S.B.: . Phys. Rev. B 87, 220503 (2013).  https://doi.org/10.1103/PhysRevB.87.220503 ADSGoogle Scholar
  57. 57.
    Xu, M., Song, X., Wang, H.: . Phys. Chem. Chem. Phys. 19, 7964 (2017).  https://doi.org/10.1039/C7CP00173H Google Scholar
  58. 58.
    Zhao, W., Li, M., Chang, C.Z., Jiang, J., Wu, L., Liu, C., Moodera, J.S., Zhu, Y., Chan, M.H.W.: . Science Advances 4(3) (2018).  https://doi.org/10.1126/sciadv.aao2682. https://advances.sciencemag.org/content/4/3/eaao2682
  59. 59.
    Hohenberg, P., Kohn, W.: . Phys. Rev. 136(3B), B864 (1964).  https://doi.org/10.1103/PhysRev.136.B864 ADSGoogle Scholar
  60. 60.
    Kohn, W., Sham, L.J.: . Phys. Rev. 140, 1133 (1965).  https://doi.org/10.1103/PhysRev.140.A1133 ADSMathSciNetGoogle Scholar
  61. 61.
    Ozaki, T., Kino, H.: . Phys. Rev. B 69, 195113 (2004).  https://doi.org/10.1103/PhysRevB.69.195113 ADSGoogle Scholar
  62. 62.
    Bachelet, G.B., Hamann, D.R., Schlüter, M.: . Phys. Rev. B 26, 4199 (1982).  https://doi.org/10.1103/PhysRevB.26.4199 ADSGoogle Scholar
  63. 63.
    Kleinman, L., Bylander, D.M.: . Phys. Rev. Lett. 48, 1425 (1982).  https://doi.org/10.1103/PhysRevLett.48.1425 ADSGoogle Scholar
  64. 64.
    Blöchl, P. E.: . Phys. Rev. B 41, 5414 (1990).  https://doi.org/10.1103/PhysRevB.41.5414 ADSGoogle Scholar
  65. 65.
    Troullier, N., Martins, J.L.: . Phys. Rev. B 43, 1993 (1991).  https://doi.org/10.1103/PhysRevB.43.1993 ADSGoogle Scholar
  66. 66.
    Morrison, I., Bylander, D.M., Kleinman, L.: . Phys. Rev. B 47, 6728 (1993).  https://doi.org/10.1103/PhysRevB.47.6728 ADSGoogle Scholar
  67. 67.
    Perdew, J.P., Burke, K., Ernzerhof, M.: . Phys. Rev. Lett. 77, 3865 (1996).  https://doi.org/10.1103/PhysRevLett.77.3865 ADSGoogle Scholar
  68. 68.
    Momma, K., Izumi, F.: . J. Appl. Crystallogr. 44(6), 1272 (2011).  https://doi.org/10.1107/S0021889811038970 Google Scholar
  69. 69.
    Nekrasov, I.A., Pavlov, N.S., Sadovskii, M.V.: . JETP Lett. 105(6), 370 (2017).  https://doi.org/10.1134/S0021364017060029 ADSGoogle Scholar
  70. 70.
    Nekrasov, I.A., Pavlov, N.S., Sadovskii, M.V.: . J. Exp. Theor. Phys. 126(4), 485 (2018).  https://doi.org/10.1134/S1063776118040106 ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Siberian Federal UniversityKrasnoyarskRussia
  2. 2.Kirensky Institute of Physics, Federal Research Center KSC SB RASAkademgorodokRussia

Personalised recommendations