Skip to main content
Log in

Synthesis and Elucidation of Structural, Morphological, Magnetic, and Electrical Properties of Al3+ Substituted Ba0.7Sr0.3Ti1 − xAlxO3 Perovskites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this paper, the structural, morphological, magnetic, and electrical properties of Al3+ substituted Ba0.7Sr0.3Ti1 − xAlxO3 (where x = 0, 0.05, 0.10, 0.15, 0.20) perovskites were properly elucidated which were successfully synthesized by the standard solid-state reaction method. All the compositions were calcined at 700 °C for 4 h and sintered at 1150 °C for 4 h. The XRD patterns of all the prepared compositions were of single phase and showed good crystallinity. The crystalline phase was indexed as a simple cubic structure preferentially oriented along (110) plane. The lattice constant increased for the sample with Al content; x = 0.05 then decreased with further increase of Al content. FESEM images confirmed good microstructural and morphological properties with a homogeneous distribution of grains in the sample which was surrounded by a visible grain boundary. The result observed from VSM showed that all the compositions exhibited weak ferromagnetic properties at room temperature. The real part of complex permeability showed that the resonance frequency shifted towards higher frequency because Al3+ substitution and the quality factor increased at high frequency which indicated that the prepared perovskites had high-frequency magnetic applications. A high-quality factor was observed at a higher frequency which confirmed high-frequency dielectric applications of the prepared compositions. AC resistivity increased with the increase in Al content which indicated that the prepared perovskites had low eddy current loss characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. M. Vijatović*), J. D. Bobić, B. D. Stojanović, History and challenges of barium titanate: part II. Sci. Sinter. 40, 235–244 (2008)

  2. M. M. Vijatović*), J. D. Bobić, B. D. Stojanović, History and challenges of barium titanate: part I. Sci. Sinter. 40, 155–165 (2008)

  3. Khirade, P.P., Birajdar, S.D., Humbe, A.V., Jadhav, K.M.: Structural, electrical and dielectrical property investigations of Fe-doped BaZrO3 nanoceramics. J. Electron. Mater. 45, 3227–3235 (2016)

    Article  ADS  Google Scholar 

  4. Khirade, P.P., Shinde, A.B., Raut, A.V., Birajdar, S.D., Jadhav, K.M.: Investigations on the synthesis, structural and microstructural characterizations of Ba1-xSrxZrO3 nanoceramics. Ferroelectrics. 504, 216–229 (2016)

    Article  Google Scholar 

  5. Liou, J.W., Chiou, B.S.: Dielectric characteristics of doped Ba1-xSrxTiO3 at the paraelectric state. Mater. Chem. Phys. 51, 59–63 (1997)

    Article  Google Scholar 

  6. Kshirsagar, P.M., Pankaj, P., Khirade, D.N., Bhoyar, S.J., Shukla, K.M.J.: Structural and dielectrical properties of pure and strontium doped barium titanate nanoparticles by sol-gel auto combustion method. Int J Innov Sci, Eng Technol. 4, 1–4 (2017)

    Google Scholar 

  7. Jain, A., Maikhuri, N., Saroha, R., Pastor, M., Jha, A.K., Panwar, A.K.: Microstructural and dielectric investigations of vanadium substituted barium titanate ceramics. Adv. Mater. Lett. 7, 567–572 (2016)

    Article  Google Scholar 

  8. Pu, Y., Chen, W., Chen, S., Langhammer, H.T.: Microstructure and dielectric properties of dysprosium-doped barium titanate ceramics. Cerâmica. 51, 214–218 (2005)

    Article  Google Scholar 

  9. Pinjari, R.K., Burange, N.M., Aldar, B.A.: Structural and electrical analysis of strontium substituted barium titanate. Int J Eng Res Technol. 3, 209–213 (2014)

    Google Scholar 

  10. Sheela Devi, A.K.: JHA, structural, dielectric and ferroelectric properties of tungsten substituted barium titanate ceramics. Asian J. Chem. 21, S117–S124 (2009)

    Google Scholar 

  11. Takeda, S., Zhang, Z.-G., Moriyoshi, C., Kuroiwa, Y., Honda, A., Inoue, N., Higai, S.’i., Ando, A.: Structure fluctuation in Gd- and Mg-substituted BaTiO3 with cubic structure. Jpn. J. Appl. Phys. 56(1–4), (2017)

    Article  Google Scholar 

  12. Morrison, F.D., Sinclair, D.C., West, A.R.: Electrical and structural characteristics of lanthanum-doped barium titanate ceramics. J. Appl. Phys. 86, 6355–6366 (1999)

    Article  ADS  Google Scholar 

  13. Sun, Q., Gu, Q., Zhu, K., Jin, R., Liu, J., Wang, J., Qiu, J.: Crystalline structure, defect chemistry and room temperature colossal permittivity of Nd-doped barium titanate. Sci. Rep. 7, 1–8 (2017)

    Article  ADS  Google Scholar 

  14. Maeda, K.: Rhodium-doped barium titanate perovskite as a stable p-type semiconductor photocatalyst for hydrogen evolution under visible light. ACS Appl. Mater. Interfaces. 6, 2167–2173 (2014)

    Article  Google Scholar 

  15. Maglione, M., Böhmer, R., Loidl, A., Höchli, U.T.: Polar relaxation mode in pure and iron-doped barium titanate. Phys. Rev. B. 40(11), 441–11 444 (1989)

    Google Scholar 

  16. Mahata, M.K., Kumar, K., Rai, V.K.: Structural and optical properties of Er3+/Yb3+ doped barium titanate phosphor prepared by co-precipitation method. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 124, 285–291 (2014)

    Article  Google Scholar 

  17. Karimunnesa, S., Ullah, A.K.M.A., Hasan, M.R., Shanta, F.S., Islam, R., Khan, M.N.I.: Effect of holmium substitution on the structural, magnetic and transport properties of CoFe2-xHoxO4 ferrites. J. Magn. Magn. Mater. 457(57–63), 57 (2018)

    Article  ADS  Google Scholar 

  18. Glinchuk, M.D., Bykov, I.P., Kornienko, S.M., Laguta, V.V., Slipenyuk, A.M., Bilous, A.G., V'yunov, O.I., Yanchevskii, O.Z.: Influence of impurities on the properties of rare-earth-doped barium-titanate ceramics. J. Mater. Chem. 10, 941–947 (2000)

    Article  Google Scholar 

  19. Matsuura, K., Hoshina, T., Takeda, H., Sakabe, Y., Tsurumi, T.: Effects of Ca substitution on room temperature resistivity of donor-doped barium titanate based PTCR ceramics. J. Ceram. Soc. Japan. 122, 402–405 (2014)

    Article  Google Scholar 

  20. Lee, S.J., Park, S.M., Han, Y.H.: Dielectric relaxation of Al-doped BaTiO3. Jpn. J. Appl. Phys. 48, 031403–0311-5 (2009)

    Article  ADS  Google Scholar 

  21. Alkathya, M.S., Joseph, A., James Raju, K.C.: Dielectric properties of Zr substituted barium strontium titanate. Mater Today: Proc. 3, 2321–2328 (2016)

    Google Scholar 

  22. Nelson, J.B., Riley, D.P.: An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proc. Phys. Soc. 57, 160–177 (1944)

    Article  ADS  Google Scholar 

  23. Toma, F.T.Z., Esha, I.N., Al-Amin, M., Khan, M.N.I., Maria, K.H.: Study of the structural, electrical and magnetic properties of calcium (Ca) and strontium (Sr) substituted barium titanate (BaTiO3) ceramics. J. Ceram. Process. Res. 18, 701–710 (2017)

    Google Scholar 

  24. Ahmed, I., Ali, A.H., Khang, N.C., Kim, Y.S.: Ferroelectric, and piezoelectric properties of BaTi1-xAlxO3, 0 ≤ x ≤ 0.015. AIP Adv. 5, 097125-(1-10), (2015)

  25. Miah, M.J., Khan, M.N.I., Akther Hossain, A.K.M.: Synthesis and enhancement of multiferroic properties of (x)Ba0.95Sr0.05TiO3-(1−x)BiFe0.90Dy0.10O3 ceramics. J. Magn. Magn. Mater. 397, 39–50 (2016)

    Article  ADS  Google Scholar 

  26. Globus, A., Duplex, P., Guyot, M.: Determination of initial magnetization curve from crystallites size and effective anisotropy field. IEEE Trans. Magn. 7, 617–622 (1971)

    Article  ADS  Google Scholar 

  27. Rahman, K.R., Chowdhury, F.-U.-Z., Khan, M.N.I.: Structural, morphological, and magnetic properties of Al3+ substituted Ni0.25Cu0.20Zn0.55AlxFe2−xO4 ferrites synthesized by solid state reaction route. Results Phys. 7, 354–360 (2017)

    Article  ADS  Google Scholar 

  28. Haque, M.M., Huq, M., Hakim, M.A.: Influence of CuO and sintering temperature on the microstructure and magnetic properties of Mg–Cu–Zn ferrites. J. Magn. Magn. Mater. 320, 2792–2799 (2008)

    Article  ADS  Google Scholar 

  29. Kumar, P., Sharma, S.K., Knobel, M., Singh, M.: Effect of La3+ doping on the electric, dielectric and magnetic properties of cobalt ferrite processed by co-precipitation technique. J. Alloys Compd. 508, 115–118 (2010)

    Article  Google Scholar 

  30. Verma, A., Chatterjee, R.: Effect of zinc concentration on the structural, electrical and magnetic properties of mixed Mn-Zn and Ni-Zn ferrites synthesized by the citrate precursor technique. J. Magn. Magn. Mater. 306, 313–320 (2006)

    Article  ADS  Google Scholar 

  31. Chand, J., Kumar, G., Kumar, P., Sharma, S.K., Knobel, M., Singh, M.: Effect of Gd3+ doping on magnetic, electric and dielectric properties of MgGd2-xO4 ferrites processed by standard solid state reaction technique. J. Alloys Compd. 509, 9638–9644 (2011)

    Article  Google Scholar 

  32. Maxwell, J.C.: A Treatise on Electricity and Magnetism. Clarendon Press, Oxford (1982)

    MATH  Google Scholar 

  33. Wagner, K.W.: Ann. Phys. (Leipzig). 40, 817–855 (1913)

    Article  ADS  Google Scholar 

  34. Bagum, A., Hossen, M.B., Chowdhury, F.U.Z.: Complex impedance and electric modulus studies of Al substituted Co0.4Cu0.2Zn0.4AlxFe2-xO4 ferrites prepared by auto combustion technique. Ferroelectrics. 494, 19–32 (2016)

    Google Scholar 

  35. Deskins, N.A., Dupuis, M.: Electron transport via polaron hopping in bulk TiO2: a density functional theory characterization. Phys. Rev. B. 75, 195212-(1-10), (2007)

  36. Koops, C.G.: On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121–124 (1951)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge the Department of Electrical and Electronic Engineering (EEE), University of Chittagong, Chittagong 4331, Bangladesh. The authors are thankful to the Materials Science Division, Atomic Energy Center, Dhaka 1000, Bangladesh, for extending their experimental facilities. The authors would also like to give thanks to the Bangladesh University of Engineering and Technology (BUET) for allowing them to use the Field Emission Scanning Electron Microscope (FESEM) facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. U. Ahamed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afsana, N., Ahamed, J.U. & Khan, M.N.I. Synthesis and Elucidation of Structural, Morphological, Magnetic, and Electrical Properties of Al3+ Substituted Ba0.7Sr0.3Ti1 − xAlxO3 Perovskites. J Supercond Nov Magn 33, 825–834 (2020). https://doi.org/10.1007/s10948-019-05249-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05249-8

Keywords

Navigation