Advertisement

Physical Properties of Sr-Doped Double Perovskite La2NiMnO6

  • Ting Wang
  • Hong-Ye Wu
  • Yun-Bin Sun
  • Ru Xing
  • Bao Xv
  • Jian-Jun ZhaoEmail author
Original Paper
  • 16 Downloads

Abstract

A series of double perovskite manganese oxide La2−xSrxNiMnO6 (x = 0, 0.05, 0.1) samples were prepared by solid-state synthesis. The XRD patterns show that the three samples have perovskite crystal structures. The temperature dependence of the magnetization curves for La2−xSrxNiMnO6 (x = 0, 0.05, 0.1) near the Curie temperature indicates that Sr-doping weakens the ferromagnetism while enhancing the antiferromagnetism of this system, and the field-dependent magnetization curves further confirm this conclusion. The hysteresis loops, the enlarged views of the hysteresis loops at 2 K, and the Raman spectra of the three samples indicate that Sr-doping increases the antisite disorder degree, the number of antisite defects, and the antiphase boundaries, and the antiferromagnetic coupling between the antiphase boundaries and the surrounding ferromagnetic regions is enhanced. At the same time, the temperature dependence of the inverse magnetic susceptibility changes from an upward deviation from the Curie-Weiss law to a downward trend. This phenomenon can be explained by the opposing changes in the relative strength between the antisite defects and the antiferromagnetic coupling strength. After Sr-doping, the field-cooling curve and field-warming curve of the LSNMO system do not coincide, which is typical of a first-order phase transition. This phenomenon is further confirmed by the rescaling and arrott curves. The temperature dependence of the resistivity curves shows that the La2−xSrxNiMnO6 (x = 0, 0.05, 0.1) samples are all semiconductor materials. Following Sr-doping, the metal-insulator transition temperature of the system decreases, and the difference between the resistivity values measured at 0 T and 2 T increases.

PACS

75.47.Lx 91.60.Pn 75.50.Ee 75.60.-d 

Keywords

Double perovskite Antisite disorder Antiphase boundaries Antiferromagnetic coupling 

Notes

Funding Information

Project supported by the National Natural Science Foundation of China (Grant Nos. 11164019, 51562032, 61565013), the Science Foundation of Inner Mongolia, China (Grant No. 2015MS0109), the Inner Mongolia Science Research Fund in Higher Education Institutions, China (NJZZ11166, NJZY12202, NJZY16237), the Production and Research Joint Program of the Baotou Science and Technology Bureau, China (2014X1014-01, 2015Z2011), and the Postgraduate Scientific Research Innovation Program of Inner Mongolia, China (S201710127 (S01)).

References

  1. 1.
    Liu W J 2016 Structural and Physical Properties of Double Perovskite Ln2Ni/CoMnO6 Ph. D. Dissertation (Hefei:University of Science and Technology of China) (in Chinses)[刘文杰 2015双钙钛矿Ln2Ni/CoMnO6体系结构及物性研究 博士学位论文 (合肥:中国科学技术大学)Google Scholar
  2. 2.
    Kang, J.-S., Lee, H.J., Kim, D.H., et al.: Valence and spin states, and the metal-insulator transition in ferromagnetic La2−xSrxMnNiO6 (x=0,0.2). Phys. Rev. B. 80, 045115 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Kim, B., Choi, H.C., Kim, B.H., Min, B.I.: Electronic structure and magnetic properties of hole-carrier-doped La2MnNiO6:La2−xSrxMnNiO6. Phys. Rev. B. 81, 224402 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Wang, X.J., Sui, Y., Li, Y., et al.: The influence of the antiferromagnetic boundary on the magnetic property of La 2NiMnO6. Phys. Lett. 95, 252502 (2009)Google Scholar
  5. 5.
    Zhou, S.M., Guo, Y.Q., Zhao, J.Y., et al.: Appl. Phys. Lett. 96, 262507 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Zhao, S.Y., Shi, L., Zhou, S.M., et al.: J. Appl. Phys. 106, 123901 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Guo, Y.Q., Shi, L., Zhou, S.M., et al.: Phys. D: ApplPhys. 46, 175302 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Wang, W.Q., Xiang, J.Y., Wu, K.H., Wan, S.L., Zhao, J.J., Lu, Y.: J. Rare Earths. 36(06), 39–44 (2015) (in Chinese)[王文清, 向俊尤, 武柯含, 万素磊, 赵建军, 鲁毅2015 稀土 36(06), 39–44]Google Scholar
  9. 9.
    Asai, K., Fujiyoshi, K., Nishimori, N., et al.: Phys Soc Jpn. 67, 4218–4228 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    Wan, S.L., He, L.M., Xiang, J.Y., Wang, Z.G., Xing, R., Zhang, X.F., Lu, Y., Zhao, J.J.: Acta Phys. Sin. 23(63), 336–340 (2014) (in Chinese)[万素磊, 何利民, 向俊尤, 王志国, 邢茹, 张雪峰, 鲁毅, 赵建军 2014 物理学报23(63)336-340]Google Scholar
  11. 11.
    Mandal, P.R., Nath, T.K.: MaterResExpress. 2, 066101 (2015)ADSGoogle Scholar
  12. 12.
    He, L.M., Ji, Y., Lu, Y., Wu, H.Y., Zhang, X.F., Zhao, J.J.: Acta Phys. Sin. 14(63), 329–333 (2014) (in Chinese)[何利民, 冀钰, 鲁毅, 吴鸿业, 张雪峰, 赵建军2014 物理学报14(63)329-333]Google Scholar
  13. 13.
    Amit Kumar Singh, Samta Chauhan, Saurabh Kumar Srivastava, etal. Solid State Communication, 2016Google Scholar
  14. 14.
    Sarma, D.D., Ray, S., Tanaka, K., et al.: Phys. Rev. Lett. 98, 157205 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Sanyal, P., Tarat, S., Majumdar, P., et al.: Eur. Phys. J. B. 65, 39 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Dass, R.I., Yan, J.-Q., Goodenough, J.B.: Phys.Rev.B. 68, 0664415 (2003)CrossRefGoogle Scholar
  17. 17.
    García-Hernández, M., Martínez, J.L., Martínez-Lope, M.: J. Phys. Rev. Lett. 862443 (2001)Google Scholar
  18. 18.
    Meneghini, C., Ray, S., Liscio, F.: Phys. Rev. Lett. 103, 046403 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Guo, H.Z., Burgess, J., Ada, E., et al.: Phys. Rev. B. 77, 174423 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Truong, K.D., Laverdiere, J., Singh, M.P., et al.: Phys. Rev. B. 76, 132413 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Zhou, S.M., Shi, L., Yang, H.P.: etal. Phys. Lett. 91, 172505 (2007)Google Scholar
  22. 22.
    Nyrissa, S., Rogado, Li, J., et al.: AdvMater. 17, 2225–2227 (2005)Google Scholar
  23. 23.
    Meiklejohn, W.H., Bean, C.P.: PhysRev. 102, 1413 (1957)ADSGoogle Scholar
  24. 24.
    Sun X D, Xv B, Wu H Y, Cao F Z, Zhao J J, Lu Y 2017 Acta Phys. Sin. (66)15p245–252(in Chinese) [孙晓东,徐宝,吴鸿业,曹凤泽,赵建军,鲁毅 2017 物理学报(66)15 245–252]Google Scholar
  25. 25.
    Zemni, S., Bassaoui, M., Dhahri, J., et al.: MaterLett. 63, 489 (2009)Google Scholar
  26. 26.
    Nirmala, R., Mudryk, Y.: Phys. Rev. B. 76, 014407 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Wang, D.H., Liu, H.D., Tang, S.L., et al.: Solid State Communication. 121(4), 199–202 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    Shi Q Y, Xv S J, Ju J H, Han Z D, Qian B, Jiang X Y 2015 J. Changshu Instit Technol (Natural Sciences) 29 2 (in Chinese)[史倩仪,许淑娟,居晶华,韩志达,钱 斌,江学范2015常熟理工学院学报(自然科学)第29卷第2期, 2015年3月]Google Scholar
  29. 29.
    Yun, H.Q., Xing, R., Sun, X.D., Sun, Y.B., Lu, Y., Zhao, J.J.: Chin J Low Temp Phys. 02(39), 11–15 (2017) (in Chinese) [云慧琴,邢茹,孙晓东,孙运斌,鲁毅,赵建军2017低温物理学报02(39)11–15]Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ting Wang
    • 1
  • Hong-Ye Wu
    • 1
    • 2
  • Yun-Bin Sun
    • 1
    • 2
  • Ru Xing
    • 1
    • 2
  • Bao Xv
    • 1
    • 2
  • Jian-Jun Zhao
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of PhysicsBaotou Normal UniversityBaotouChina
  2. 2.Inner Mongolia Key Laboratory of Magnetism and Magnetic MaterialsBaotouChina
  3. 3.School of Physical Science and TechnologyBaotou Teachers CollegeBaotouChina

Personalised recommendations