Skip to main content
Log in

Matching Permeability and Permittivity of Ga-Substituting Mg-Cd Ferrites for High-Frequency Antennas

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This work mainly investigated the effects of gallium-substituting iron on the magnetic and dielectric properties of Mg-Cd ferrites Mg0.8Cd0.2Fe2-xGaxO4 (x = 0.0, 0.05, 0.10, and 0.15) for high-frequency antennas. All the samples were synthesized at 1170 °C. XRD patterns indicated the samples crystallized in normal spinel structure. Magnetic and dielectric spectrum measurement results revealed that the permeability and permittivity of the samples were tailored with change of x value. Finally, the composites possessed excellent matching permeability (μ′) and permittivity (ε′) (x = 0.10, μ′/ε′ ≈ 1.2), over a long frequency range from 1 to 40 MHz. Comparatively, low dielectric loss tanδε and magnetic loss tanδμ (tanδε ≈ 0.003, tanδμ ≈ 0.035) were obtained due to densification sintering displayed in the SEM figures. Furthermore, magnetic properties were enhanced, such as increased saturation magnetization (approximately 22.14 emu/g) and decreased coercivity (approximately 51.67 Oe), as x value increased. These properties validated the introduction of Ga ions could take effect in high-frequency region applications for Mg-Cd ferrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jia, H.S., Liu, W.H., Zhang, Z.Z., Chen, F., Li, Y.R., Liu, J.L., Nie, Y.: Monodomain MgCuZn ferrite with equivalent permeability and permittivity for broad frequency band applications. Ceram. Int. 43(8), 5974–5978 (2017)

    Article  Google Scholar 

  2. Krishnaveni, T., Murthy, S.R., Gao, F., Lu, Q., Komarneni, S.: Microwave hydrothermal synthesis of nanosize Ta2O5 added Mg-Cu-Zn ferrites. J. Mater. Sci. 41(5), 1471–1474 (2006)

    Article  ADS  Google Scholar 

  3. Li, J., Zhang, H.W., Li, Q., Li, Y.X., Yu, G.L.: Influence of La-Co substitution on the structure and magnetic properties of low-temperature sintered M-type barium ferrites. J. Rare Earths. 31(10), 983–987 (2013)

    Article  Google Scholar 

  4. Kong, L.B., Li, Z.W., Lin, G.Q., Gan, Y.B.: Electrical and magnetic properties of magnesium ferrite ceramics doped with Bi2O3. Acta Mater. 55(19), 6561–6572 (2007)

    Article  Google Scholar 

  5. Zahir, R., Chowdhury, F.U.Z., Uddin, M.M., Hakim, M.A.: Structural, magnetic and electrical characterization of Cd-substituted Mg ferrites synthesized by double sintering technique. J. Magn. Magn. Mater. 410, 55–62 (2016)

    Article  ADS  Google Scholar 

  6. Gan, G., Zhang, H., Li, Q., Li, J., Huang, X., Xie, F., Xu, F., Zhang, Q., Li, M., Liang, T., Wang, G.: Low loss, enhanced magneto-dielectric properties of Bi 2 O 3 doped Mg-Cd ferrites for high frequency antennas. J. Alloys Compd. 735, 2634–2639 (2018)

    Article  Google Scholar 

  7. M. Kaiser, S.S. Ata-Allah, Low frequency conductivity study of gallium-substituted magnesium-copper spinel ferrite, Phys. Status Solidi (b) 242 (15) (2005) 3138–3148

    Article  ADS  Google Scholar 

  8. Mohamed, M.B., Yehia, M.: Cation distribution and magnetic properties of nanocrystalline gallium substituted cobalt ferrite. J. Alloys Compd. 615, 181–187 (2014)

    Article  Google Scholar 

  9. M. Kaiser, Composition, temperature and frequency dependence of dielectric parameters in Ga-substituted Co-Cu mixed ferrites, Phys. Status Solidi (a) 201 (14) (2004) 3148–3156

    Article  ADS  Google Scholar 

  10. Kong, L.B., Li, Z.W., Lin, G.Q., Gan, Y.B.: Magneto-dielectric properties of Mg-Cu-Co ferrite ceramics: II. Electrical, dielectric, and magnetic properties. J. Am. Ceram. Soc. 90(7), 2104–2112 (2007)

    Article  Google Scholar 

  11. Lee, J., Heo, J., Lee, J., Han, Y.: Design of small antennas for mobile handsets using magneto-dielectric material. IEEE Trans. Antennas Propag. 60(4), 2080–2084 (2012)

    Article  ADS  Google Scholar 

  12. Esin Chang, Stuart A. Long, W.F. Richards., an experimental investigation of electrically thick, IEEE Trans. Antennas Propag. AP-34 (6) (1986) 767–772

  13. Hansen, R.C.: Fundamental limitations in Antennas. Proc. IEEE. 69(13), 170–182 (1981)

    Article  ADS  Google Scholar 

  14. Saini, A., Rana, K., Thakur, A., Thakur, P., Mattei, J.L., Queffelec, P.: Low loss composite nano ferrite with matching permittivity and permeability in UHF band. Mater. Res. Bull. 76, 94–99 (2016)

    Article  Google Scholar 

  15. Skrivervik, A.K., Zurcher, J.F., Staub, O., Mosig, J.R.: PCS antenna design: the challenge of miniaturization. Ieee Antenn Propag M. 43(4), 12–26 (2001)

    Article  ADS  Google Scholar 

  16. Sebastian, M.T., Jantunen, H.: Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53(2), 57–90 (2013)

    Article  Google Scholar 

  17. Wang, G., Zhang, H.W., Huang, X., Xu, F., Gan, G.W., Yang, Y., Wen, D.D., Li, J., Liu, C., Jin, L.C.: Correlations between the structural characteristics and enhanced microwave dielectric properties of V-modified Li3Mg2NbO6 ceramics. Ceram. Int. 44(16), 19295–19300 (2018)

    Article  Google Scholar 

  18. Yadav, R.S., Kuřitka, I., Vilcakova, J., Havlica, J., Masilko, J., Kalina, L., Tkacz, J., Enev, V., Hajdúchová, M.: Structural, magnetic, dielectric, and electrical properties of NiFe 2 O 4 spinel ferrite nanoparticles prepared by honey-mediated sol-gel combustion. J. Phys. Chem. Solids. 107, 150–161 (2017)

    Article  ADS  Google Scholar 

  19. Karcıoğlu Karakaş, Z., Boncukcuoğlu, R., Karakaş, İ.H., Ertuğrul, M.: The effects of heat treatment on the synthesis of nickel ferrite (NiFe2O4) nanoparticles using the microwave assisted combustion method. J. Magn. Magn. Mater. 374, 298–306 (2015)

    Article  ADS  Google Scholar 

  20. Naik, M.Z., Salker, A.V.: Tailoring the super-paramagnetic nature of MgFe 2 O 4 nanoparticles by In 3+ incorporation. Mater. Sci. Eng. B. 211, 37–44 (2016)

    Article  Google Scholar 

  21. Zheng, Z.L., Zhang, H.W., Xiao, J.Q., Yang, Q.H., Jia, L.J.: Low loss NiZn spinel ferrite-W-type hexaferrite composites from BaM addition for antenna applications. J. Phys. D. Appl. Phys. 47(11), (2014)

    Article  ADS  Google Scholar 

  22. Peng, Y., Wu, X., Chen, Z., Liu, W., Wang, F., Wang, X., Feng, Z., Chen, Y., Harris, V.G.: BiFeO3 tailored low loss M-type hexaferrite composites having equivalent permeability and permittivity for very high frequency applications. J. Alloys Compd. 630, 48–53 (2015)

    Article  Google Scholar 

  23. Iyengar, A.S., Liang, D., Gao, X.P.A., Abramson, A.R.: Densification effects on the electrical behavior of uniaxially compacted bismuth nanowires. Acta Mater. 60(5), 2369–2378 (2012)

    Article  Google Scholar 

  24. Dar, M.A., Varshney, D.: Effect of d-block element Co2+ substitution on structural, Mossbauer and dielectric properties of spinel copper ferrites. J. Magn. Magn. Mater. 436, 101–112 (2017)

    Article  ADS  Google Scholar 

  25. Batlle, X., Obradors, X., Rodríguez-Carvajal, J., Pernet, M., Cabañas, M.V., Vallet, M.: Cation distribution and intrinsic magnetic properties of Co-Ti-dopedM-type barium ferrite. J. Appl. Phys. 70(3), 1614–1623 (1991)

    Article  ADS  Google Scholar 

  26. Li, Q., Bao, S.X., Liu, Y.L., Li, Y.X., Jing, Y.L., Li, J.: Influence of lightly Sm-substitution on crystal structure, magnetic and dielectric properties of BiFeO3 ceramics. J. Alloys Compd. 682, 672–678 (2016)

    Article  Google Scholar 

  27. Penn, S.J., Alford, N.M., Templeton, A., Wang, X.R., Xu, M.S., Reece, M., Schrapel, K.: Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 80(7), 1885–1888 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers for their valuable comments.

Funding

This work is partially supported by the National Natural Science Foundation of China under grant (nos. 61501494, 61701523, 61801508, 61871474), the Natural Science Foundational Research Fund of Shaanxi Province (nos. 2017JM6025, 2018JM6040), the Young Talent fund of University Association for Science and Technology in Shaanxi Province (no. 20170107), Postdoctoral Innovative Talents Support Program of China (BX20180375), and Innovative Talents Cultivate Program of Shaanxi Province (No.2017KJX-24).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinglu Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Zhu, M., Zheng, W. et al. Matching Permeability and Permittivity of Ga-Substituting Mg-Cd Ferrites for High-Frequency Antennas. J Supercond Nov Magn 33, 559–564 (2020). https://doi.org/10.1007/s10948-019-05228-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05228-z

Keywords

Navigation