Skip to main content
Log in

Spatial Inhomogeneities in the Superconducting Gap of SrFe1.6Co0.4As2 Single Crystals

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We report spatial inhomogeneity of the superconducting gap of optimally doped SrFe1.6Co0.4As2 single crystals using scanning tunneling microscopy and spectroscopy studies from 20 to 5 K. This composition becomes superconductor at TC\(\sim \) 18 K and 60 % volume of the bulk becomes superconductor at 5 K. Local tunnel spectra at 5 K show coherence peaks with a depression near the Fermi energy. These spectra are asymmetric and amplitude of the coherence peaks vary with position. Gaps magnitude (Δ) is also not constant over the surface; we found a distribution of gap between 11.5 and 17.5 meV energy range along a line with an average value of \(\bar {\Delta } =\) 13.7 meV and standard deviation σ = 1.4 meV. This leads to a fractional variation \(\sigma /\bar {\Delta }~=~\) 10 %. The calculated reduced gap 2\(\bar {\Delta }\)/kBTC at 5 K shows a very high value of 17.68 as compared to the s/d-wave superconductor indicating a strong pairing strength for the SC order parameter. Above TC, spectra does not show any gap and the observed inhomogeneity is also less. By comparing our data with underdoped composition, we claim that spatial inhomogeneity in the SC gap is an intrinsic property of the Fe-As-based superconductors and phase boundary plays much important role for such inhomogeneity rather than the disorder or dopant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Keimer, B., et al.: Magnetic excitations in pure, lightly doped, and weakly metallic La2CuO4. Phys. Rev. B 46, 14034 (1992)

    Article  ADS  Google Scholar 

  2. Armitage, N.P., Fournier, P., Greene, R.L.: Progress and perspectives on electron-doped cuprates. Rev. Mod. Phys. 82, 2421 (2010)

    Article  ADS  Google Scholar 

  3. Johnston, D.C.: The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv. Phys. 59, 803 (2010)

    Article  ADS  Google Scholar 

  4. Mazin, I.I., Schmalian, J.: Pairing symmetry and pairing state in ferropnictides: theoretical overview. Phys. C 469, 614 (2009)

    Article  ADS  Google Scholar 

  5. Chubukov, A.: Pairing mechanism in Fe-based superconductors. Ann. Rev. Cond. Matter Phys. 3, 57 (2012)

    Article  Google Scholar 

  6. Kordyuk, A.A.: Iron-based superconductors: magnetism, superconductivity, and electronic structure (Review Article). Low Temp. Phys. 38, 888 (2012)

    Article  ADS  Google Scholar 

  7. Stewart, G.R.: Superconductivity in iron compounds. Rev. Mod. Phys. 83, 1589 (2011)

    Article  ADS  Google Scholar 

  8. Singh, D.J.: Electronic structure doping in BaFe2As2 and LiFeAs density functional calculations. Phys. Rev. B 78, 094511 (2008)

    Article  ADS  Google Scholar 

  9. Zhao, J., et al.: Structural and magnetic phase diagram of CeFeAsO1−xFx and its relation to high-temperature superconductivity. Nature Mater. 7, 953 (2008)

    Article  ADS  Google Scholar 

  10. Dutta, A., Kumar, N, Thamizhavel, A., Gupta, A.K..: Weakening of the spin density wave gap at low temperatures in SrFe2As2 single crystals. Phys. Status Solidi B 253(2), 340 (2016)

    Article  ADS  Google Scholar 

  11. Krellner, C., Caroca-Canales, N., Jesche, A., Rosner, H., Ormeci, A., Geibel, C.: Magnetic and structural transitions in layered iron arsenide systems:AFe2As2 versus RFeAsO. Phys. Rev. B 78, 100504(R) (2008)

    Article  ADS  Google Scholar 

  12. Leithe-Jasper, A., Schnelle, W., Geibel, C., Rosner, H.: Superconducting state in SrFe2−xCoxAs2 by internal doping of the iron arsenide layers. Phys. Rev. Lett. 101, 207004 (2008)

    Article  ADS  Google Scholar 

  13. Sasmal, K, Lv, B, Lorenz, B, Guloy, A.M., Chen, F.: Superconducting Fe-based compounds (A1−xSrx)Fe2As2 with A = K and Cs with transition temperatures up to 37 K, Yu-Yi Xue, and Ching-Wu Chu. Phys. Rev. Lett. 101, 107007 (2008)

    Article  ADS  Google Scholar 

  14. Igawa, K, et al.: Pressure-induced superconductivity in iron pnictide compound SrFe2As2. J. Phys. Soc. Jpn. 78, 025001 (2009)

    Article  ADS  Google Scholar 

  15. Alireza, P.L., Ko, Y.T.C., Gillett, J., Petrone, C.M., Cole, J.M., Lonzarich, G.G., Sebastian, S.E.: Superconductivity up to 29 K in SrFe2As2 and BaFe2As2 at high pressures. J. Phys.: Condens. Matter 21, 012208 (2008)

    ADS  Google Scholar 

  16. Yi Yin, M., Zech, T.L., Williams, X.F., Wang, G. W. u., Chen, X.H., Hoffman, J.E.: Scanning tunneling spectroscopy and vortex imaging in the iron pnictide superconductor BaFe1.8Co0.2As2. Phys. Rev. Lett. 102, 097002 (2009)

    Article  ADS  Google Scholar 

  17. Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett 6, 57 (1961)

    Article  ADS  Google Scholar 

  18. Massee, F.: A tunneler’s view on correlated oxides and iron based superconductors. Ph.D. Thesis, University of Amsterdam, Netharlands (2011)

  19. McElroy, K., Lee, D.-H., Hoffman, J., Lang, K., Lee, J., Hudson, E., Eisaki, H., Uchida, S., Davis, J.C.: Coincidence of checkerboard charge order and antinodal state decoherence in strongly underdoped superconducting bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 94, 197005 (2005)

    Article  ADS  Google Scholar 

  20. Chen, T.Y., Tesanovic, Z., Liu, R.H., Chen, X.H., Chien, C.L.: A BCS-like gap in the superconductor SmFeAsO0.85F0.15. Nature (London) 453, 1224 (2008)

    Article  ADS  Google Scholar 

  21. Won, H., Maki, K.: d-wave superconductor as a model of high-Tc superconductors. Phys. Rev. B 49, 1397 (1994)

    Article  ADS  Google Scholar 

  22. Massee, F., Huang, Y.K., Kaas, J., van Heumen, E., de Jong, S., Huisman, R., Luigjes, H., Goedkoop, J.B., Golden, M.S.: Pseudogap-less high-Tc superconductivity in BaCoxFe2−xAs2. Europhys. Lett. 92(5), 57012 (2010)

    Article  ADS  Google Scholar 

  23. Kato, T., Mizuguchi, Y., Nakamura, H., Machida, T., Sakata, H., Takano, Y.: Local density of states and superconducting gap in the iron chalcogenide superconductor Fe1+δSe1−xTex observed by scanning tunneling spectroscopy. Phys. Rev. B 80, 180507(R) (2009)

    Article  ADS  Google Scholar 

  24. Fasano, Y., Maggio-Aprile, I., Zhigadlo, N.D., Katrych, S., Karpinski, J., Fischer, Ø.: Local quasiparticle density of states of superconducting SmFeAsO1−xFx single crystals evidence for spin-mediated pairing. Phys. Rev. Lett. 105, 167005 (2010)

    Article  ADS  Google Scholar 

  25. Dynes, R., Narayanamurti, V., Garno, J.: Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor. Phys. Rev. Lett. 41, 1509 (1978)

    Article  ADS  Google Scholar 

  26. Terashimaa, K., et al.: Fermi surface nesting induced strong pairing in iron-based superconductors. Proc. Natl Acad. Sci. USA 106, 7330 (2009)

    Article  ADS  Google Scholar 

  27. Massee, F., Huang, Y., Huisman, R., de Jong, S., Goedkoop, J.B., Golden, M.S.: Nanoscale superconducting-gap variations and lack of phase separation in optimally doped BaFe1.86Co0.14As2. Phys. Rev. B 79, 220517(R) (2009)

    Article  ADS  Google Scholar 

  28. Shan, L., Wang, Y.-L., Gong, J., Shen, B., Huang, Y., Yang, H., Ren, C., Wen, H.-H.: Evidence of multiple nodeless energy gaps in superconducting Ba0.6K0.4Fe2As2 single crystals from scanning tunneling spectroscopy. Phys. Rev. B 83, 060510(R) (2011)

    Article  ADS  Google Scholar 

  29. Teague, M.L., Drayna, G.K., Lockhart, G.P., Cheng, P., Shen, B., Wen, H.-H., Yeh, N.-C.: Measurement of a sign-changing two-gap superconducting phase in electron-doped Ba(Fe1−xCox)2As2 single crystals using scanning tunneling spectroscopy. Phys. Rev. Lett 106, 087004 (2011)

    Article  ADS  Google Scholar 

  30. Shan, L., et al.: Observation of ordered vortices with Andreev bound states in Ba0.6K0.4Fe2As2. Nat. Phys. 7, 325 (2011)

    Article  Google Scholar 

  31. Lee, W.-C., Wu, C.: Spectroscopic imaging scanning tunneling microscopy as a probe of orbital structures and ordering. Phys. Rev. Lett 103, 176101 (2009)

    Article  ADS  Google Scholar 

  32. Tersoff, J., Hamann, D.: Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 50, 1998 (1983)

    Article  ADS  Google Scholar 

  33. Hoffman, J.E.: Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors. Rep. Prog. Phys. 74, 124513 (2011)

    Article  ADS  Google Scholar 

  34. Nakayama, K., et al.: Superconducting gap symmetry of Ba0.6K0.4Fe2As2 studied by angle-resolved photoemission spectroscopy. Europhys. Lett. 85, 67002 (2009)

    Article  ADS  Google Scholar 

  35. Ding, H., et al.: Observation of Fermi-surface–dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2. Europhys. Lett. 83, 47001 (2008)

    Article  ADS  Google Scholar 

  36. Evtushinsky, D.V., et al.: Momentum dependence of the superconducting gap in Ba1−xKxFe2As2. Phys. Rev. B 79, 054517 (2009)

    Article  ADS  Google Scholar 

  37. de Jong, S., Huang, Y., Huisman, R., Massee, F., Thirupathaiah, S., Gorgoi, M., Schaefers, F., Follath, R., Goedkoop, J.B., Golden, M.S.: High-resolution, hard x-ray photoemission investigation of BaFe2As2: moderate influence of the surface and evidence for a low degree of Fe 3d – As 4p hybridization of electronic states near the Fermi energy, vol. 79 (2009)

  38. Preosti, G., Kim, H., Muzikar, P.: Density of states in unconventional superconductors: impurity-scattering effects. Phys. Rev. B 50, 1259 (1994)

    Article  ADS  Google Scholar 

  39. Bang, Y., Choi, H.-Y., Won, H.: Impurity effects on the ±s-wave state of the iron-based superconductors. Phys. Rev. B 79, 054529 (2009)

    Article  ADS  Google Scholar 

  40. Dutta, A, Kumar, N., Thamizhavel, A., Gupta, A.K.: Electronic inhomogeneities in the superconducting phase of CaFe1.96Ni0.04As2 single crystals. Sol. St. Commun. 204, 41 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Anirban acknowledges financial support from the CSIR of the Government of India and SERB, India, for National Post-Doctoral Fellowship (PDF/2016/002531).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Dutta.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, A. Spatial Inhomogeneities in the Superconducting Gap of SrFe1.6Co0.4As2 Single Crystals. J Supercond Nov Magn 33, 347–353 (2020). https://doi.org/10.1007/s10948-019-05217-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05217-2

Keywords

Navigation