Skip to main content
Log in

Optical, Magnetic, and Electronic Properties of Nanostructured VO2 Thin Films Grown by Spray Pyrolysis: DFT First Principle Study

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this work, we have grown nanostructured vanadium dioxide (VO2) thin films by a spray pyrolysis coating method on glass pre-heated substrates at 450 °C and studied their optical and electronic properties. As-prepared film structure and morphology, with a thickness of ~ 400 nm, were examined by X-ray diffraction, Raman spectra, and atomic force microscopy (AFM), thus revealing a polycrystalline monoclinic M1 phase. On the other hand, the electrical resistance was measured as a function of the temperature in the range of 25 to 100 °C where a clear transition from the M1 phase at T = 25 °C to the metallic one (conductive phase) at ~ 60 °C was observed. This also confirms the stability of the M1 phase for T < 60 °C. The electronic properties and band structure were additionally investigated by the local density approximation (LDA) using the first principle of the Korringa-Kohn-Rostroker (KKR). As a result, our material showed a magnetic property, specifically an antiferromagnetic stabilization of the M1 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zheng, L., Xu, Y., Jin, D., Xie, Y.: Novel metastable hexagonal MoO3 nanobelts: synthesis, photochromic, and electrochromic properties. Chem. Mater. 21, 5681–5690 (2009)

    Google Scholar 

  2. Sauvet, K., Sauques, L., Durand, O., Perrière, J., Ledeuil, J.B., Gonbeau, D., Rougier, A.: WO3 thin films active in the ir region. in: Advances in Science and Technology. Trans Tech Publ. 30–35 (2008)

  3. Li, W., Ji, S., Sun, G., Ma, Y., Guo, H., Jin, P.: Novel VO2(M)–ZnO heterostructured dandelions with combined thermochromic and photocatalytic properties for application in smart coatings. New J. Chem. 40, 2592–2600 (2016)

    Google Scholar 

  4. Yusuf, A., Snape, C., He, J., Xu, H., Liu, C., Zhao, M., Chen, G.Z., Tang, B., Wang, C., Wang, J.: Advances on transition metal oxides catalysts for formaldehyde oxidation: a review. Catal. Rev. 1–45 (2017)

  5. Moskalyk, R., Alfantazi, A.: Processing of vanadium: a review. Miner. Eng. 16, 793–805 (2003)

    Google Scholar 

  6. Liu, H., Wan, D., Ishaq, A., Chen, L., Guo, B., Shi, S., Luo, H., Gao, Y.: Sputtering deposition of sandwich-structured V2O5/metal (V, W)/V2O5 multilayers for the preparation of high-performance thermally sensitive VO2 thin films with selectivity of VO2 (B) and VO2 (M) polymorph. ACS Appl. Mater. Interfaces. 8, 7884–7890 (2016)

    Google Scholar 

  7. Liang, Y., Qin, P., Yuan, X., Zhang, H.: A ferromagnetic isostructural insulator-metal transition in monoclinic VO2. arXiv preprint arXiv. 1611.06294 (2016)

  8. Morin, F.: Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett. 3, 34 (1959)

    ADS  Google Scholar 

  9. Marezio, M., McWhan, D.B., Remeika, J., Dernier, P.: Structural aspects of the metal-insulator transitions in Cr-doped VO2. Phys. Rev. B. 5, 2541 (1972)

    ADS  Google Scholar 

  10. Sohn, J.I., Joo, H.J., Ahn, D., Lee, H.H., Porter, A.E., Kim, K., Kang, D.J., Welland, M.E.: Surface-stress-induced Mott transition and nature of associated spatial phase transition in single crystalline VO2 nanowires. Nano Lett. 9, 3392–3397 (2009)

    ADS  Google Scholar 

  11. Jerominek, H., Picard, F., Vincent, D.: Vanadium oxide films for optical switching and detection. Optical Engineering-Bellingham-International Society For Optical Engineering. 32, 2092–2092 (1993)

    Google Scholar 

  12. Jorgenson, G., Lee, J.: Doped vanadium oxide for optical switching films. Solar Energy Mater. 14, 205–214 (1986)

    Google Scholar 

  13. Xu, S., Ma, H., Dai, S., Jiang, Z.: Study on optical and electrical switching properties and phase transition mechanism of Mo6+-doped vanadium dioxide thin films. J. Mater. Sci. 39, 489–493 (2004)

    ADS  Google Scholar 

  14. Stefanovich, G., Pergament, A., Stefanovich, D.: Electrical switching and Mott transition in VO2. J. Phys. Condens. Matter. 12, 8837 (2000)

    ADS  Google Scholar 

  15. Wu, C., Feng, F., Xie, Y.: Design of vanadium oxide structures with controllable electrical properties for energy applications. Chem. Soc. Rev. 42, 5157–5183 (2013)

    Google Scholar 

  16. Nakano, M., Shibuya, K., Ogawa, N., Hatano, T., Kawasaki, M., Iwasa, Y., Tokura, Y.: Infrared-sensitive electrochromic device based on VO2. Appl. Phys. Lett. 103, 153503 (2013)

    ADS  Google Scholar 

  17. Kovendhan, M., Joseph, D.P., Manimuthu, P., Sendilkumar, A., Karthick, S., Sambasivam, S., Vijayarangamuthu, K., Kim, H.J., Choi, B.C., Asokan, K.: Prototype electrochromic device and dye sensitized solar cell using spray deposited undoped and ‘Li’doped V2O5 thin film electrodes. Curr. Appl. Phys. 15, 622–631 (2015)

    ADS  Google Scholar 

  18. Tong, Z., Yang, H., Na, L., Qu, H., Zhang, X., Zhao, J., Li, Y.: Versatile displays based on a 3-dimensionally ordered macroporous vanadium oxide film for advanced electrochromic devices. J. Mater. Chem. C. 3, 3159–3166 (2015)

    Google Scholar 

  19. Zhou, J., Gao, Y., Zhang, Z., Luo, H., Cao, C., Chen, Z., Dai, L., Liu, X.: VO2 thermochromic smart window for energy savings and generation. Sci. Rep. 3, (2013)

  20. Huang, Z., Chen, C., Lv, C., Chen, S.: Tungsten-doped vanadium dioxide thin films on borosilicate glass for smart window application. J. Alloys Compd. 564, 158–161 (2013)

    Google Scholar 

  21. Babulanam, S., Eriksson, T., Niklasson, G., Granqvist, C.: Thermochromic VO2 films for energy-efficient windows. Solar Energy Mater. 16, 347–363 (1987)

    Google Scholar 

  22. Malarde, D., Powell, M.J., Quesada-Cabrera, R., Wilson, R.L., Carmalt, C.J., Sankar, G., Parkin, I.P., Palgrave, R.G.: Optimized atmospheric-pressure chemical vapor deposition thermochromic VO2 thin films for intelligent window applications. ACS Omega. 2, 1040–1046 (2017)

    Google Scholar 

  23. Liu, H., Wang, Y., Wang, K., Hosono, E., Zhou, H.: Design and synthesis of a novel nanothorn VO2 (B) hollow microsphere and their application in lithium-ion batteries. J. Mater. Chem. 19, 2835–2840 (2009)

    Google Scholar 

  24. Reddy, C.V.S., Walker, E.H., Wicker, S., Williams, Q.L., Kalluru, R.R.: Synthesis of VO2 (B) nanorods for Li battery application. Curr. Appl. Phys. 9, 1195–1198 (2009)

    ADS  Google Scholar 

  25. Yang, S., Gong, Y., Liu, Z., Zhan, L., Hashim, D.P., Ma, L., Vajtai, R., Ajayan, P.M.: Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett. 13, 1596–1601 (2013)

    ADS  Google Scholar 

  26. Molaei, R., Bayati, R., Nori, S., Kumar, D., Prater, J., Narayan, J.: Diamagnetic to ferromagnetic switching in VO2 epitaxial thin films by nanosecond excimer laser treatment. Appl. Phys. Lett. 103, 252109 (2013)

    ADS  Google Scholar 

  27. Nori, S., Yang, T.-H., Narayan, J.: VO2 thin films: defect mediation in room temperature ferromagnetic switching characteristics. JOM. 63, 29 (2011)

    Google Scholar 

  28. Matsuno, T., Sugahara, S., Tanaka, M.: Novel reconfigurable logic gates using spin metal–oxide–semiconductor field-effect transistors. Jpn. J. Appl. Phys. 43, 6032 (2004)

    ADS  Google Scholar 

  29. Zhou, Y., Ramanathan, S.: Mott memory and neuromorphic devices. Proc. IEEE. 103, 1289–1310 (2015)

    Google Scholar 

  30. Goldflam, M., Driscoll, T., Chapler, B., Khatib, O., Marie Jokerst, N., Palit, S., Smith, D., Kim, B.-J., Seo, G., Kim, H.-T.: Reconfigurable gradient index using VO2 memory metamaterials. Appl. Phys. Lett. 99, 044103 (2011)

    ADS  Google Scholar 

  31. Beck, A., Bednorz, C., Gerber, C., Rossel, C.P.: Microelectronic device for storing information with switchable ohmic resistance. In: Google Patents (2004)

    Google Scholar 

  32. Di Ventra, M., Pershin, Y.V., Chua, L.O.: Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE. 97, 1717–1724 (2009)

    Google Scholar 

  33. Katayama, H., Terakura, K., Kanamori, J.: Hyperfine field of positive muon in ferromagnetic nickel. Solid State Commun. 29, 431–434 (1979)

    ADS  Google Scholar 

  34. Blügel, S., Akai, H., Zeller, R., Dederichs, P.: Hyperfine fields of 3d and 4d impurities in nickel. Phys. Rev. B. 35, 3271 (1987)

    ADS  Google Scholar 

  35. Akai, H.: Fast Korringa-Kohn-Rostoker coherent potential approximation and its application to FCC Ni-Fe systems. J. Phys. Condens. Matter. 1, 8045–8064 (1989)

    ADS  Google Scholar 

  36. Aoki, H., Akai, H., Hosaka, A., Toki, H., Malik, F.: Condensed Matter Theories, vol. 21. Nova Science, Tokyo (2007)

    Google Scholar 

  37. Long, N.H., Akai, H.: First-principles KKR-CPA calculation of interactions between concentration fluctuations. J. Phys. Condens. Matter. 19, 365232 (2007)

    Google Scholar 

  38. V. Eyert, The metal-insulator transitions of VO2: a band theoretical approach, arXiv preprint cond-mat/0210558, (2002)

    Google Scholar 

  39. Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)

    Google Scholar 

  40. Marini, C., Arcangeletti, E., Di Castro, D., Baldassare, L., Perucchi, A., Lupi, S., Malavasi, L., Boeri, L., Pomjakushina, E., Conder, K.: Optical properties of V1-xCrxO2 compounds under high pressure. Phys. Rev. B. 77, 235111 (2008)

    ADS  Google Scholar 

  41. Kang, L., Gao, Y., Luo, H.: A novel solution process for the synthesis of VO2 thin films with excellent thermochromic properties. ACS Appl. Mater. Interfaces. 1, 2211–2218 (2009)

    Google Scholar 

  42. Schilbe, P.: Raman scattering in VO2. Phys. B Condens. Matter. 316, 600–602 (2002)

    ADS  Google Scholar 

  43. Chen, F., Fan, L., Chen, S., Liao, G., Chen, Y., Wu, P., Song, L., Zou, C., Wu, Z.: Control of the metal–insulator transition in VO2 epitaxial film by modifying carrier density. ACS Appl. Mater. Interfaces. 7, 6875–6881 (2015)

    Google Scholar 

  44. Radue, E., Crisman, E., Wang, L., Kittiwatanakul, S., Lu, J., Wolf, S., Wincheski, R., Lukaszew, R., Novikova, I.: Effect of a substrate-induced microstructure on the optical properties of the insulator-metal transition temperature in VO2 thin films. J. Appl. Phys. 113, 233104 (2013)

    ADS  Google Scholar 

  45. Arcangeletti, E., Baldassarre, L., Di Castro, D., Lupi, S., Malavasi, L., Marini, C., Perucchi, A., Postorino, P.: Evidence of a pressure-induced metallization process in monoclinic VO2. Phys. Rev. Lett. 98, 196406 (2007)

    ADS  Google Scholar 

Download references

Funding

This work was financially supported by the Aula Universitaria del Estrecho (AUE) mobility grant of Spain and also Hassan II Academy of Science and Technology, Integrated Action MA/10/228, and the CNRST-URAC-14, PPR/2015/9-Morocco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. El Haimeur.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Haimeur, A., Mrigal, A., Bakkali, H. et al. Optical, Magnetic, and Electronic Properties of Nanostructured VO2 Thin Films Grown by Spray Pyrolysis: DFT First Principle Study. J Supercond Nov Magn 33, 511–517 (2020). https://doi.org/10.1007/s10948-019-05216-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05216-3

Keywords

Navigation