Effect of Nickel Addition on the Magnetic and Microstructural Properties of Cu-Al-Fe Alloy

Abstract

The Ni addition on the magnetic properties of a Cu-10%Al-5%Fe (wt.%) alloy was studied. The alloy was produced by an arc melting method, and its magnetic properties such as coercivity and magnetization saturation were measured using a physical property measuring system (PPMS) instrument. In addition, structural properties of the alloys were characterized by the use of X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses. From SEM observations, two distinct phases were found to be in the microstructure consisting of (α + γ2) eutectoid and kappa (κI, κII, and κIII) phases. After the addition of the Ni element in the Cu-10%Al-5%Fe, we observed a decrement for the secondary κII phase. The magnetization curves, M-H, exhibited a clear ferromagnetic behavior. Present results indicate soft magnetic properties for the investigated alloy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Humpback Van, J., Janssen, J., Mwamba, N., Delaey, L.: Scripta Metall. 18, 893 (1984)

  2. 2.

    Janocha, H.: Adaptronics and Smart Structures, Ed., Springer, (1999)

  3. 3.

    Duerig, T.W., Zadno, R.: An engineer’s perspective of pseudo elasticity, in: Engineering Aspects of Shape Memory Alloys, Butterworth Heinemann, London 369 (1990)

    Google Scholar 

  4. 4.

    Müller, I., Xu, H.: On the hysteresis in shape memory alloys, in: The Martensitic Transformation in Science and Technology, Eds. E. Hombogen and N. Jost, DGM Informationsgesellschaft Verlag 319 (1989)

  5. 5.

    Sajjadi, S.A., Zebarjad, S.M.: J. Mater. Process. Technol. 189, 107 (2007)

    Article  Google Scholar 

  6. 6.

    Yang, Z.G., Fang, H.S.: Curr. Opin. Solid State Mater. Sci. 9, 277 (2005)

    ADS  Article  Google Scholar 

  7. 7.

    Oliveira, F.L.G., Andrade, M.S., Cota, A.B.: Mater. Charact. 58, 256 (2007)

    Article  Google Scholar 

  8. 8.

    Elwazri, A.M., Wanjara, P., Yue, S.: Mater. Sci. Eng. A. 404, 91 (2005)

    Article  Google Scholar 

  9. 9.

    Dash, J., Otte, H.M.: Acta Metall. 11, 1169 (1963)

    Article  Google Scholar 

  10. 10.

    Thewlis, G.: Mater. Sci. Technol. 20, 143 (2004)

    Article  Google Scholar 

  11. 11.

    Güler, E.: Mater. Chem. Phys. 107, 183 (2008)

    Article  Google Scholar 

  12. 12.

    Friend, C.M.: Scr. Metall. 23, 1817 (1989)

    Article  Google Scholar 

  13. 13.

    Dagdelen, F., Gokhan, T., Aydogdu, A., Aydogdu, Y., Adigüzel, O.: Mater. Lett. 57, 1079 (2003)

    Article  Google Scholar 

  14. 14.

    Gupta, R., K., Ghosh, B.R., Sinha, P.P.: Metal Sci. Heat Treat. 47, 526 (2005)

  15. 15.

    Sláma, P., Dlouhı, J., Kövér, M.: MATEC 9,1580–2949, 48 (4), 599 (2014)

    Google Scholar 

  16. 16.

    Pisarek, B.P.: Arch. Foundry Eng. 13, 72 (2013)

    Article  Google Scholar 

  17. 17.

    Mehboob, N.: Hysteresis properties of soft magnetic materials, angestrebter akademischer Grad Doktorin der Naturwissenschaften (Dr. rer.nat.), Wien, (2012)

  18. 18.

    Herzer, G.: Scr. Metall. Mater. 33(1011), 1741 (1995)

    Article  Google Scholar 

  19. 19.

    Herzer, G.: IEEE Trans. Magn. 25(5), 3327 (1989)

    ADS  Article  Google Scholar 

  20. 20.

    Meigh, H.J.: Cast and wrought aluminum bronzes: properties, processes and structure, IOM Communications Ltd. London, 156 (2000)

  21. 21.

    Wen Xu, J.: J. Alloys Comp. 448, 331 (2008)

    Article  Google Scholar 

  22. 22.

    Castro, M.L., Romero, R.: Mater. Sci. Eng. A273–275, 577 (1999)

    Article  Google Scholar 

  23. 23.

    Sutou, Y., Omori, T., Furukawa, A., Takahashi, Y., Kainuma, R., Yamauchi, K., Yamashita, S., Ishida, K.: Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater. 69B, 64 (2004)

    Article  Google Scholar 

  24. 24.

    Gao, L.L., Cheng, X.H.: Mater. Sci.-Poland 25, 1119 (2007)

  25. 25.

    Aydogdu, Y., Turabi, A.S., Kok, M., Aydogdu, A., Tobe, H., Karaca, H.E.: Appl. Phys. A Mater. 117, 2073 (2014)

    ADS  Article  Google Scholar 

  26. 26.

    Gavrila, H., Ionita, V.: J. Optoelectronic Adv. Mater.173, 192 (2002)

  27. 27.

    Herzer, G.: In: Buschow, K.H.J. (ed.) Handbook of Magnetic Materials, Elsevier Science B.V.,10, 415 (1997)

  28. 28.

    Jiles, D.: Introduction to magnism and magnetic materials. Chapman and Hall (1991)

  29. 29.

    Oikawa, K., Koeda, N., Sutou, Y., Omori, T., Kainuma, R., Ishida K.: Mater. Trans.,45, 2780 (2004)

Download references

Acknowledgements

The financial support of Amasya University project is gratefully acknowledged (ProjectNos. FMB-BAP 19-0405).

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Aldirmaz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aldirmaz, E., Güler, M. & Güler, E. Effect of Nickel Addition on the Magnetic and Microstructural Properties of Cu-Al-Fe Alloy. J Supercond Nov Magn 33, 755–759 (2020). https://doi.org/10.1007/s10948-019-05214-5

Download citation

Keywords

  • CuAlFe
  • Eutectoid
  • Kappa (κ)
  • Coercivity
  • Hysteresis loop