Skip to main content
Log in

Effect of Microwave Heat Treatment on Hydrothermal Synthesis of Nano-MgFe2O4

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Microwave sintered magnesium ferrite (MF) nanoparticles are synthesised by hydrothermal technique. X-ray diffraction revealed pure spinel phase but low crystallinity. Synthesised MF is observed to be in nanoscale under scanning electron and transmission electron microscopes. MF is characterised further by Fourier transform infrared and UV-visible spectrometers for vibrational bands and optical band gap information. Electric and magnetic characterizations revealed low conductivity, dielectric loss, magnetic loss and fairly good initial permeability. High coercivity and M-H loop area of MF indicate the hard magnetic nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shen, Y., Wu, Y., Li, X., Zhao, Q., Hou, Y.: Mater. Lett. 96, 85–88 (2013)

    Google Scholar 

  2. Bruce, P.G., Scrosati, B., Tarascon, J.M.: Angew. Chem. Int. Ed. 47, 2930–2946 (2008)

    Google Scholar 

  3. SeemaVerma, P.A., Joy, Y.B., Khollam, H.S., Potdar, S.B.D.: Mater. Lett. 58, 1092–1095 (2004)

    Google Scholar 

  4. Ghanbari, D., MasoudSalavati-Niasari: Korean J. Chem. Eng. 32, 903–910 (2015)

    Google Scholar 

  5. Naseri, M.G., Ara, M.H.M., Saion, E.B., Shaari, A.H.: J. Magn. Magn. Mater. 350, 141–147 (2014)

    ADS  Google Scholar 

  6. Bagheri, M., Bahrevar, M.A., Beitollahi, A.: Ceram. Int. 41, 11618–11624 (2015)

    Google Scholar 

  7. Bhongale, S.R., Ingawale, H.R., Shinde, T.J., Vasambekar, P.N.: J. Rare Earths. 36, 390–397 (2018)

    Google Scholar 

  8. Kumar, K., Loganathan, A.: Mater. Chem. Phys. 214, 229–238 (2018)

    Google Scholar 

  9. Akbari, S., Masoudpanah, S.M., Mirkazemi, S.M., Aliyan, N.: Ceram. Int. 43, 6263–6267 (2017)

    Google Scholar 

  10. Gupta, M., Gupta, M., Randhawa, B.S.: J Appl. Ceram. Tech. 10(6), 917–923 (2013)

    Google Scholar 

  11. Rashada, M.M., Haraza, F.A., Sigmund, W., Magn, J.: Mag. Mater. 322, 2058–2064 (2010)

    Google Scholar 

  12. Hussein, S.I., Elkady, A.S., Rashad, M.M., Mostafa, A.G., Megahid, R.M.: J. Magn. Magn. Mater. 379, 9–15 (2015)

    ADS  Google Scholar 

  13. Mund, H.S., Ahuja, B.L.: Mater. Res. Bull. 85, 228–233 (2017)

    Google Scholar 

  14. Druc, A.C., Borhan, A.I., Diaconu, A., Iordan, A.R., Nedelcu, G.G., Leontie, L., Palamaru, M.N.: Ceram. Int. 40, 13573–13578 (2014)

    Google Scholar 

  15. Zamani, F., Taghvaei, A.H.: Ceram. Int. 44, 17209–17217 (2018)

    Google Scholar 

  16. Durrani, S.K., Naz, S., Mehmood, M., Nadeem, M., Siddique, M.: J. Saudi Chem. Soc. 21, 899–910 (2017)

    Google Scholar 

  17. Wakiya, N., Yamasaki, M., Adachia, T., Inukai, A., Sakamoto, N., Fu, D., Sakurai, O., Shinozakic, K.: Hisao Suzuki Mater. Sci. Engg. B. 173, 195–198 (2010)

    Google Scholar 

  18. Bellini, J.V., de Medeiros, S.N., Ponzoni, A.L.L., Longen, F.R., de Melo, M.A.C., PaesanoJr, A.: Mater. Chem. Phys. 105, 92–98 (2007)

    Google Scholar 

  19. DaliyaS.Mathew, Ruey-ShinJuang: Chem. Eng. J. 129, 51–65 (2007)

    Google Scholar 

  20. Thakur, S., Katyal, S.C., Singh, M., Magn, J.: Mag. Mater. 321, 1–7 (2009)

    ADS  Google Scholar 

  21. Liu, C., Zou, B., Rondinone, A.J., Zhang, Z.J.: J. Am. Chem. Soc. 122, 6263 (2000)

    Google Scholar 

  22. Bensebaa, F., Zavaliche, F., L’Ecuyer, P., Cochrane, R.W., Veres, T.: J. Colloid Interface Sci. 277, 104–110 (2004)

    ADS  Google Scholar 

  23. Caillot, T., Pourroy, G., Stuerga, D.: J. Solid State Chem. 177, 3843–3848 (2004)

    ADS  Google Scholar 

  24. Quirino, M.R., Oliveira, M.J.C., Keyson, D., Lucena, G.L., Oliveira, J.B.L., Gama, L.: Mater. Res. Bull. 74, 124–128 (2016)

    Google Scholar 

  25. Koferstein, R., Walther, T., Hesse, D., Ebbinghaus, S.G.: J. Mater. Sci. 48, 6509–6518 (2013)

    ADS  Google Scholar 

  26. Gateshki, M., Petkov, V., Pradhan, S.K., Vogt, T.: J. Appl. Crystallogr. 38, 772 (2005)

    Google Scholar 

  27. Berchmans, L.J., Selvan, R.K., Kumar, P.N.S., Augustin, C.O.: J. Magn. Magn. Mater. 279, 103 (2004)

    ADS  Google Scholar 

  28. Iqbal, M.J., Ahmad, Z., Melikhov, Y., Nlebedim, I.C.: J. Magn. Magn. Mater. 324, 1088 (2012)

    ADS  Google Scholar 

  29. Khot, V.M., Salunkhe, A.B., Phadatare, M.R., Pawar, S.H.: Mater. Chem. Phys. 132, 782 (2012)

    Google Scholar 

  30. Xia, A., Liu, S., ChuanguiJin, L.C.: YaohuiLv, Mater. Lett. 105, 199–201 (2013)

    Google Scholar 

  31. Sasaki, T., Ohara, S., Naka, T., Vejpravova, J., Sechovsky, V., Umetsu, M., Takami, S., Jeyadevan, B., Adschiri, T.: J. Sup. Cri. Flu. 53, 92–94 (2010)

    Google Scholar 

  32. Lu, L., Li, J., Jing, Y., Song, P., Ng, D.H.L.: Chem. Eng. J. 283, 524–534 (2016)

    Google Scholar 

  33. Lanfredi, S., Darie, C., Bellucci, F.S., Colin, C.V., Nobre, M.A.L.: Dalton Trans. 43, 10983–10998 (2014)

    Google Scholar 

  34. Nonkumwong, J., Ananta, S., Jantaratana, P., Phumying, S., Maensiri, S., Srisombat, L.: J. Magn. Magn. Mater. 381, 226–234 (2015)

    ADS  Google Scholar 

  35. Mahmoud, M.H., Elshahawy, A.M.: SalahA.Makhlouf, H.H.Hamdeh. J. Magn. Magn. Mater. 369, 55–61 (2014)

    ADS  Google Scholar 

  36. Laokul, P., Amornkitbamrung, V., Seraphin, S., Maensiri, S.: Curr.Appl. Phys. 11, 101–108 (2011)

    ADS  Google Scholar 

  37. Moradmard, H., Shayeshtech, S.F., Tohidi, P., Abbas, Z., Khalegi, M.: J. Alloy. Comps. 650, 116–122 (2015)

    Google Scholar 

  38. Dumitrescu, A.M., Lisa, G., Iordan, A.R., Tudorache, F., Petrila, I., Borhan, A.I., Palamaru, M.N., Mihailescu, C., Leontie, L., Munteanu, C.: Mater. Chem. Phys. 156, 170–179 (2015)

    Google Scholar 

  39. Singh, J.P., Dixit, G., Srivastava, R.C., Agrawal, H.M., Kumar, R.: J. Alloy. Comps. 551, 370–375 (2013)

    Google Scholar 

  40. Gabal, M.A., Kosa, S., Al Mutairi, T.S.: J. Molec. Struc. 1063, 269–273 (2014)

    ADS  Google Scholar 

  41. Rashad, M.M.: J. Mater. Sci. 42, 5248–5255 (2007)

    ADS  Google Scholar 

  42. Sattara, A.A., EL-Sayeda, H.M., ALsuqia, I.: J. Magn. Magn. Mater. 395, 89–96 (2015)

    ADS  Google Scholar 

  43. Gabal, M.A.: RedaM.El-Shishtawy, Y. M. AlAngari. J. Magn. Magn. Mater. 324, 2258–2264 (2012)

    ADS  Google Scholar 

  44. Madhuri, W., Penchal Reddy, M., Kim, I.G., Rama Manohar Reddy, N., Siva Kumar, K.V., Murthy, V.R.K.: Mater. Sci. Eng. B. 178, 843–850 (2013)

    Google Scholar 

  45. Mocanu, Z.V., Airimioaei, M., Ciomaga, C.E., Curecheriu, L., Tudorache, F., Tascu, S., Iordan, A.R., Palamaru, N.N.M., Mitoseriu, L.: J. Mater. Sci. 49, 3276–3286 (2014)

    ADS  Google Scholar 

  46. Kidner, N.J., Homrighaus, Z.J., Ingram, B.J., Mason, T.O., Garboczi, E.J.: J. Electroceram. 14, 283–291 (2005)

    Google Scholar 

  47. BelalHossen, M., Akther Hossain, A.K.M.: Adv. Mater. Lett. 6, 810–815 (2015)

    Google Scholar 

  48. Naseri, M.G., Saion, E.B., Hashim, M., Shaari, A.H., Ahangar, H.A.: Solid State Commun. 151(14–-15), 1031–1035 (2011)

    ADS  Google Scholar 

  49. Pradeep, A., Priyadharsini, P., Chandrasekaran, G.: J. Magn. Magn. Mater. 320, 2774–2779 (2008)

    ADS  Google Scholar 

  50. Chandra Babu Naidu, K., Madhuri, W.: J. Magn. Magn. Mater. 420, 109–116 (2016)

    ADS  Google Scholar 

  51. Berchmens, L.J., Selvan, R.K., Kumar, P.N.S., Augustin, C.O.: J. Magn. Magn. Mater. 279, 103–110 (2004)

    ADS  Google Scholar 

  52. CosticaCaizer: Handbook of Nanoparticles. Springer International Publishing Switzerland, Cham (2015). https://doi.org/10.1007/978-3-319-13188-7-24-1

    Book  Google Scholar 

  53. Varalaxmi, N., Siva kumar, K.V.: J. Mater. Sci. Mater. Electron. 22, 555–560 (2011)

    Google Scholar 

  54. Roy, P.K., Bera, J.: Mater. Chem. Phys. 132, 354–357 (2012)

    Google Scholar 

  55. Deka, S., Joy, P.A.: J. Ame. Ceram. Soc. 90, 1494–1499 (2007)

    Google Scholar 

  56. Hamilton, N.C.: J. Magn. Magn. Mater. 377, 496–501 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge SIFat SAS, VIT University, Vellore and Dr. S. Manjunatha Rao from Central University Hyderabad for providing XRD, FTIR and VSM facilities respectively.

Funding

This work is financially supported by DRDO Project: ERIP/EP/1103015/M/01/1484, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhuri W..

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

K., C.B.N., S., P. & W., M. Effect of Microwave Heat Treatment on Hydrothermal Synthesis of Nano-MgFe2O4. J Supercond Nov Magn 33, 417–425 (2020). https://doi.org/10.1007/s10948-019-05194-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05194-6

Keywords

Navigation