Skip to main content
Log in

Observation of Ferromagnetism in Heavy Ion Bi-doped Nanocrystalline Zinc Oxide Prepared by Co-precipitation

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Room temperature soft ferromagnetism has been detected in nanocrystalline ZnO while doping with Bi as a heavy non-magnetic atom. The Zn1−xBixO (x = 0.0, 0.01, 0.03, and 0.05) system was synthesized by chemical co-precipitation. To investigate the origin of this enhanced ferromagnetism, characterization of crystal structure, lattice dynamics, and magnetic properties has been achieved. The presence of only one wurtizite single phase of nanocrystalline ZnO was confirmed through Rietveld analysis. The gradual increase of the c parameter also reflected complete solubility of Bi in the wurtizite lattice up to x = 0.05. Bi was detected to occupy the position 2b (1/3, 2/3, 0) of Zn. A drastic decrease of the crystallite size to less than its half value was also detected. Well-defined intercrystallite boundaries were imaged by HR-TEM. ESR studies revealed a moderate increase of the free spin density while the g values gave evidence of the formation of defects like VO+, VZn, and (BiZn–VZn) complex. Considerable increase of magnetic moment was found as Bi content increased to 0.05. We believe that the enhancement of ferromagnetism in Bi-doped ZnO can be attributed to an ensemble of key factors: free spins, vacancy defects, and the formation of nanocrystallites with intergranular layers within a threshold limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pearton, S.J., et al.: Ferromagnetism in transition-metal doped ZnO. J. Electron. Mater. 36, 462 (2007)

    ADS  Google Scholar 

  2. Ye, L.H., Freeman, A.J., Delley, B.: Half-metallic ferromagnetism in Cu-doped ZnO: density functional calculations. Phys. Rev. B. 73, 033203 (2006)

    ADS  Google Scholar 

  3. Sharma, P., et al.: Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater. 2, 673 (2003)

    ADS  Google Scholar 

  4. Lee, H.J., Jeong, S.Y., Cho, C.R., Park, C.H.: Study of diluted magnetic semiconductor: co-doped ZnO. Appl. Phys. Lett. 81, 4020 (2002)

    ADS  Google Scholar 

  5. Buchholz, D.B., Chang, R.P.H., Song, J.H., Ketterson, J.B.: Room-temperature ferromagnetism in Cu-doped ZnO thin films. Appl. Phys. Lett. 87, 082504 (2005)

    ADS  Google Scholar 

  6. Lan, Y., Feng, X., Zhang, X., Shen, Y., Wang, D.: Effects of Bi doping on structural and magnetic properties of double perovskite oxides Sr2FeMoO6. Phys. Lett. A. 380, 2962 (2016)

    ADS  Google Scholar 

  7. Topwal, D., Saram, D.D., Kato, H., Tokura, Y., Avignon, M.: Structural and magnetic properties of Sr2Fe1+xMo1−xO6(−1 ≤x ≤0.25). Phys. Rev. B. 73, 09441 (2006)

    Google Scholar 

  8. Mito, S., Takagi, H., Baryshev, A.V., Inoue, M.: Multiferroic behavior of disordered bismuth-substituted zinc ferrite. J. Appl. Phys. 111, 07D911

    Google Scholar 

  9. Borhan, A.I., Hulea, V., Iordan, A.R., Palamaru, M.N.: Cr3+ and Al3+ co-substituted zinc ferrite: structural analysis, magnetic and electrical properties. J. Polyhedron. 70, 110 (2014)

    Google Scholar 

  10. Xu, C., Rho, K., Chun, J., Kim, D.: Fabrication and photoluminescence ofZnO hierarchical nanostructurescontaining Bi2O3. Nanotechnology. 17, 60 (2006)

    ADS  Google Scholar 

  11. Aleman, B., Hidalgo, P., Fernández, P., Piqueras, J.: Thermal growth and cathodoluminescence of Bi doped ZnO nanowires and rods. J. Phys. D, Appl. Phys. 42, 225101 (2009)

    ADS  Google Scholar 

  12. Karthikeyan, B., Sandeep, C., Philip, R., Baesso, M.: Study of optical properties and effective three-photon absorption in Bi-doped ZnO nanoparticles. J. Appl. Phys. 106, 114304 (2009)

    ADS  Google Scholar 

  13. Duclere, J.R., Haire, R.O., Meaney, A., Johnston, K., Reid, I., Tobin, G., Mosnier, J.P., Viry, M.G., Mcglynn, E., Henry, M.O.: Fabrication ofp-type doped ZnO thin films using pulsed laser deposition. J. Mater. Sci. 16, 421 (2005)

    Google Scholar 

  14. Straumal, B.B., Protasova, S.G., Mazilkin, A.A., Goering, E., Schutz, G., Straumal, P.B., Baretzky, B.: Grain boundariesas a source of ferromagnetism and increased solubility of Ni in nanograined ZnO. J. Nanotechnol. 7, 1936 (2016)

    Google Scholar 

  15. Straumal, B.B., Mazilkin, A.A., Protasova, S.G., Stakhanova, S.V., Straumal, P.B., Bulatov, M.F., Tietze, T., Goering, E., Baretzky, B.: Ferromagnetic behaviour of ZnO: the role of grain boundaries. Rev. Adv. Mater. Sci. 14, 61 (2015)

    Google Scholar 

  16. Radovanovic, P.V., Gamelin, D.R.: High-temperature ferromagnetism in Ni2+-doped ZnO aggregates prepared from colloidal diluted magnetic semiconductor quantum dots. Phys. Rev. Lett. 19, 157202 (2003)

    ADS  Google Scholar 

  17. Lee, J., Subramaniam, N.G., Kowalik, I.A., Nisar, J., Lee, J., Kwon, Y., Lee, J., Kang, T., Peng, X., Arvanitis, D., Ahuja, R.: Towards a new class of heavy ion doped magnetic semiconductors for room temperature applications. Sci. Rep. 5, 17053 (2015). https://doi.org/10.1038/srep17053

    Article  ADS  Google Scholar 

  18. Sedeek, K., Said, S.A., Amer, T.Z., Makram, N., Hantour, H.: Band gap tuning in nanocrystalline SrTi0.9Fe0.1O2.968 perovskite type for photocatalytic and photovoltaic applications. J. Ceram. Int. 45, 1202 (2019)

    Google Scholar 

  19. L. Lutterottil Maud version 1.85, 2002, http://www.ing.unitn.it/~luttero/maud. Accessed Feb 2017

  20. Xiu, F.X., Mandalapu, L.J., Yang, Z., Liu, J.L.: Bi-induced acceptor states in ZnO by molecular-beam epitaxy. Appl. Phys. Lett. 89, 052103 (2006)

    ADS  Google Scholar 

  21. Qadri, S.B., Skelton, E.F., Hsu, D., Dinsmore, A.D., Yang, J., Gray, H.F., et al.: Size-induced transition-temperature reduction in nanoparticles of ZnS. Phys. Rev. 60, 9191 (1999)

    ADS  Google Scholar 

  22. Hagino, S., Yoshio, K., Yamazaki, T., Satoh, H., Matsuki, K., Onodera, A.: Electronic ferroelectricity in ZnO. Ferroelectrics. 264, 235 (2001)

    Google Scholar 

  23. Onodera, A.: Novel ferroelectricity in II-VI semiconductor ZnO. Ferroelectrics. 267, 131 (2002)

    Google Scholar 

  24. Calleja, J.M., Cardona, M.: Resonant Raman scattering in ZnO. Phys. Rev. B. 16, 3753 (1977)

    ADS  Google Scholar 

  25. Jiménez, J., Wang, B., Callahan, M.J.: Temperature dependence of Raman scattering in ZnO. Phys. Rev. B. 75, 165202 (2007)

    ADS  Google Scholar 

  26. Lang, J., Zhang, Q., Han, Q., Fang, Y., Wang, J., Li, X., Liu, Y., Wang, D., Yang, J.: The study of structural and optical properties of (Eu, La, Sm) codoped ZnO nanoparticles via a chemical route. J. Mat. Chem. Phys. 194, 29 (2017)

    Google Scholar 

  27. Serrano, J., Romero, A.H., Manjón, F.J., Lauck, R., Cardona, M., Rubio, A.: Pressure dependence of the lattice dynamics of ZnO: an ab initio approach. Phys. Rev. B. 69, 094306 (2004)

    ADS  Google Scholar 

  28. Kaschner, A., Haboeck, U., Strassburg, M., Kaczmarczyk, G., Hoffmann, A., Thomsen, C., Zeuner, A., Alves, H.R., Hofmann, D.M., Meyer, B.K.: Nitrogen-related local vibrational modes in ZnO:N. Appl. Phys. Lett. 80, 1909 (2002)

    ADS  Google Scholar 

  29. Xiong, G., Pal, U., Serrano, J.G.: Correlations among size, defects, and photoluminescence in ZnO nanoparticles. J. Appl. Phys. 101, 024317 (2007)

    ADS  Google Scholar 

  30. Yang, L.L., Yang, J.H., Wang, D.D., Zhang, Y.J., Wang, Y.X., Liu, H.L., Fan, H.C., Lang, J.H.: Photoluminescence and Raman analysis of ZnO nanowires deposited on Si(1 0 0) via vapor–liquid–solid process. Phys. E. 40, 920 (2008)

    Google Scholar 

  31. Kovalenko, A., Pourry, G., Cregut, O., Gallart, M., Honerlage, B., Gillior, P.: Evidence of unintentional n-doping in ZnO nanorods. J. Phys. Chem. C. 114, 9498 (2010)

    Google Scholar 

  32. Lang, J.H., Wang, J.Y., Zhang, Q., Xu, S.S., Han, D.L., Yang, J.H., Han, Q., Yang, L.L., Sui, Y.R., Li, X.Y., Liu, X.Y.: Synthesis and photoluminescence characterizations of the Er3+−doped ZnOnanosheets with irregular porous microstructure. Mat. Sci Semicon. Proc. 41, 32 (2016)

    Google Scholar 

  33. Zhang, H.D., Yu, M., Zhang, J.C., Sheng, C.H., Yan, X.Y., Han, W.P., Liu, Y.C., Chen, S., Shen, G.Z., Long, Y.Z.: Fabrication and photoelectric properties of La-doped p-type ZnO nanofibers and crossed p–n homojunctions by electrospinning. Nanoscale. 7, 10513 (2015)

    ADS  Google Scholar 

  34. Lang, J., Zhang, Q., Han, Q., Fang, Y., Wang, J., Li, X., Liu, Y., Wang, D., Yang, J.: The study of structural and optical properties of (Eu, La, Sm) codoped ZnO nanoparticles via a chemical route. Mater. Chem. Phys. 194, 29 (2017)

    Google Scholar 

  35. Mhlongo, G.H., Motaung, D.E., Nkosi, S.S., Swart, H.C., Malgas, G.F., Hillie, K.T., Mwakikunga, B.W.: Temperature-dependence on the structural, optical, and paramagnetic properties of ZnO nanostructures. Appl. Surf. Sci. 293, 62 (2014)

    ADS  Google Scholar 

  36. Lang, J.H., Han, Q., Li, C.S., Yang, J.H., Li, X., Yang, L.L., Wang, D.D., Zhai, H.J., Gao, M., Zhang, Y.J., Liu, X.Y., Wei, M.B.: Effect of Mn doping on the microstructures and photoluminescence properties of CBD derived ZnO nanorods. Appl. Surf. Sci. 256, 3365 (2010)

    ADS  Google Scholar 

  37. Wang, X., Li, Q., Liu, Z., Zhang, J., Liu, Z., Wang, R.: Low-temperature growth and properties of ZnO nanowires. Appl. Phys. Lett. 84, 4941 (2004)

    ADS  Google Scholar 

  38. Huange, Y., Liu, M., Li, Z., Zeng, Y., Liu, S.: Raman spectroscopy study of ZnO-based ceramic films fabricated by novel sol–gel process. Mater. Sic. Eng. B. 97, 111 (2003)

    Google Scholar 

  39. Panigrahy, B., Aslam, M., Misra, D.S., Ghosh, M., Bahadur, D.: Defect-related emissions and magnetization propertiesof ZnO nanorods. Adv. Funct. Mater. 20, 116 (2010)

    Google Scholar 

  40. Djurisic, A.B., WallaceChoy, C.H., LenusRoy, V.A., Leung, Y.H., Kwong, C.Y., Cheah, K.W., Gundu Rao, T.K., Chan, W.K., Lui, H.F., Surya, C.: Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures. Adv. Funct. Mater. 14, 856 (2004)

    Google Scholar 

  41. Prakash, T., Neri, G., Bonavita, A., Ranjith Kumar, E., Gnanamoorthi, K.: Structural, morphological and optical properties of Bi-doped ZnO nanoparticles synthesized by a microwave irradiation method. J. Mater. Sci. Mater. Electron. 26, 4913 (2015)

    Google Scholar 

  42. Morazzoni, F., Scotti, R., Di. Nola, P., Milani, C., Narducci, D.: Electron paramagnetic resonance study of the interaction of the ZnO surface with air and air–reducing gas mixtures. J. Chem. Soc. Faraday Trans. 88, 1691 (1992)

    Google Scholar 

  43. Vanheusedn, K., Seager, C.H., Warren, W.L., Tallant, D.R., Voigt, J.A.: Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett. 68, 403 (1996)

    ADS  Google Scholar 

  44. Koudelka, J., Horak, J., Jariabka, P.: Morphology of polycrystalline ZnO and its physical properties. J. Matter. Sci. 29, 1497 (1994)

    ADS  Google Scholar 

  45. Zhou, H., Hofstaetter, A., Hoffmann, D.M., Meyer, B.K.: Magnetic resonance studies on ZnO nanocrystals. Microelectron. Eng. 66, 59 (2003)

    Google Scholar 

  46. Zhou, S., Wang, P., Li, S., Zhang, B., Gong, H., Du, Z.: Ferromagnetism from co-doped ZnO nanocantilevers above room temperature. Chin. Phys. Lett. 25, 4446 (2008)

    ADS  Google Scholar 

  47. Xu, C., Yang, K., Huang, L., Wang, H.: Cu-doping induced ferromagnetism in ZnO nanowires. Appl. Phys. Lett. 130, 124711 (2009)

    Google Scholar 

  48. Peng, H.W., Xiang, H.J., Wei, S.H., Li, S.S., Xia, J.B., Li, J.B.: Origin and enhancement of hole-induced ferromagnetism in first-row d0 semiconductors. Phys. Rev. Lett. 102, 017201 (2009)

    ADS  Google Scholar 

  49. Sedeek, K., Hantour, H., Makram, N., Said, S.A.: Observation of strong ferromagnetism in the half-Heusler compound CoTiSb system. J. Magn. Magn. Mater. 407, 218 (2016)

    ADS  Google Scholar 

  50. NajiAljawfi, R., Rahman, F., Shukla, D.K.: Effect of the annealing temperature on the structural and magnetic properties of ZnO nanoparticles. Mater. Lett. 99, 18 (2013)

    Google Scholar 

  51. Rakkesh, R.A., Balakumar, S.: Structural, electrical transport and optical studies of Li ion doped ZnO nanostructures. Process. Appl. Ceram. 8(7), 7 (2014)

    Google Scholar 

  52. Wang, G., Ling, Y., Lu, X., Qian, F., Tong, Y., Zhang, J.Z., Lordi, V., Leao, C.R., Li, Y.: Computational and photoelectrochemical study of hydrogenated bismuth vanadate. J. Phys. Chem. C. 117, 10957 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Makram.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedeek, K., Abdeltwab, E., Hantour, H. et al. Observation of Ferromagnetism in Heavy Ion Bi-doped Nanocrystalline Zinc Oxide Prepared by Co-precipitation. J Supercond Nov Magn 33, 445–453 (2020). https://doi.org/10.1007/s10948-019-05190-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05190-w

Keywords

Navigation