Skip to main content

Advertisement

Log in

High-TC Superconductivity Originating from Interlayer Coulomb Coupling in Gate-Charged Twisted Bilayer Graphene Moiré Superlattices

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Unconventional superconductivity in bilayer graphene has been reported for twist angles θ near the first magic angle and charged electrostatically with holes near half filling of the lower flat bands. A maximum superconducting transition temperature TC ≈ 1.7 K was reported for a device with θ = 1.05° at ambient pressure and a maximum TC ≈ 3.1 K for a device with θ = 1.27° under 1.33 GPa hydrostatic pressure. A high-TC model for the superconductivity is proposed herein, where pairing is mediated by Coulomb coupling between charges in the two graphene sheets. The expression derived for the optimal transition temperature, TC0 = kB−1Λ(|nopt − n0|/2)1/2e2/ζ, is a function of mean bilayer separation distance ζ, measured gated charge areal densities nopt and n0 corresponding to maximum TC and superconductivity onset, respectively, and the length constant Λ = 0.00747(2) Å. Based on existing experimental carrier densities and theoretical estimates for ζ, TC0 = 1.94(4) K is calculated for the θ = 1.05° ambient-pressure device and TC0 = 3.02(3) K for the θ = 1.27° pressurized device. Experimental mean-field transition temperatures TCmf = 1.83(5) K and TCmf = 2.86(5) K are determined by fitting superconducting fluctuation theory to resistance transition data for the ambient-pressure and pressurized devices, respectively; the theoretical results for TC0 are in remarkable agreement with these experimental values. Corresponding Berezinskii-Kosterlitz-Thouless temperatures TBKT of 0.96(3) K and 2.2(2) K are also determined and interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Strains of 0.6 to 0.7% in uncapped magic-angle TBG structures were determined from scanning tunneling microscopy [4].

  2. Data points are taken at the visible dots and at approximate locations where the dots appear to be obscured. Line segments connecting dots are assumed to be guides to the eye and are ignored.

  3. The ostensibly increased corrugation amplitude near magic angle θ is strongly dependent upon gate bias, diminishing with increasing bias voltage [65, 66].

  4. Together with sheet resistance R(TBKT) on the order of 0.5 Ω (roughly estimated by extrapolating and scaling the measured R(T)/R4.5K), a relaxation time LBKT/R(TBKT) of order 10 ns is predicted for supercurrent flow at T ≈ 2.2 K.

References

  1. Cao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Kaxiras, E., Jarillo-Herroro, P.: Nature. 556, 43 (2018)

    ADS  Google Scholar 

  2. Yankowitz, M., Chen, S., Polshyn, H., Zhang, Y., Watanabe, K., Taniguchi, T., Graf, D., Young, A.F., Dean, C.R.: Science. 363, 1059 (2019)

  3. Chittari, B.L., Leconte, N., Javvaji, S., Jung, J.: Electron. Struct. 1, 015001 (2018)

    Google Scholar 

  4. Kerelsky, A., McGilly, L., Kennes, D.M., Xian, L., Yankowitz, M., Chen, S., Watanabe, K., Taniguchi, T, Hone, J., Dean, C., Rubio, A., Pasupathy, A.N.: arXiv:1812.08776v2 [cond-mat.mes-hall] (2018)

  5. Manaf, M.N., Santoso, I. Hermanto, A.: AIP Conf. Proc. 1677, 070004 (2015)

  6. Wu, F., MacDonald, A.H., Martin, I.: Phys. Rev. Lett. 121, 257001 (2018)

    ADS  Google Scholar 

  7. Choi, Y.W., Choi, H.J.: Phys. Rev. B. 98, 241412(R) (2018)

  8. Lian, B., Wang, Z., Bernevig, B.A.: arXiv:1807.04382v3 [cond-mat.mes-hall] (2019)

  9. Wu, F., Hwang, E., Das Sarma, S.: Phys. Rev. B. 99, 165112 (2019)

    ADS  Google Scholar 

  10. Wu, F.: Phys. Rev. B. 99, 195114 (2019)

    ADS  Google Scholar 

  11. González-Pedreros, G.I., Paez-Sierra, B.A., Baquero, R.: Diam. Relat. Mater. 95, 109 (2019)

    ADS  Google Scholar 

  12. Ojajärvi, R., Hyart, T., Silaev, M.A., Heikkilä, T.T.: Phys. Rev. B. 98, 054515 (2018)

    ADS  Google Scholar 

  13. Liu, C.-C., Zhang, L.-D., Chen, W.-Q., Yang, F.: Phys. Rev. Lett. 121, 217001 (2018)

    ADS  Google Scholar 

  14. Wu, X.-C., Pawlak, K.A., Jian, C.-M., Xu, C.: arXiv:1805.06906v1 [cond-mat.str-el] (2018)

  15. Peltonen, T.J., Ojajärvi, R., Heikkilä, T.T.: Phys. Rev. B. 98, 220504(R) (2018)

    ADS  Google Scholar 

  16. Ochi, M., Koshino, M., Kuroki, K.: Phys. Rev. B. 98, 081102(R) (2018)

    ADS  Google Scholar 

  17. Dodaro, J.F., Kivelson, S.A., Schattner, Y., Sun, X.Q., Wang, C.: Phys. Rev. B. 98, 075154 (2018)

    ADS  Google Scholar 

  18. MacDonald, A.H.: Physics. 12, 12 (2019)

    Google Scholar 

  19. Baskaran B.: arXiv:1804.00627v1 [cond-mat.supr-con] (2018)

  20. Fidrysiak, M., Zegrodnik, M., Spałek, J.: Phys. Rev. B. 98, 085436 (2018)

    ADS  Google Scholar 

  21. Kozii, V., Isobe, H., Venderbos, J.W.F., Fu, L.: Phys. Rev. B. 99, 144507 (2019)

  22. Laksono, E., Leaw, J.N., Reaves, A., Singh, M., Wang, X., Adam, S., Gu, X.: Solid State Commun. 282, 38 (2018)

    ADS  Google Scholar 

  23. Po, H.C., Zou, L., Vishwanath, A., Senthil, T.: Phys. Rev. X. 8, 031089 (2018)

    Google Scholar 

  24. Su, Y., Lin, S.-Z.: Phys. Rev. B. 98, 195101 (2018)

    ADS  Google Scholar 

  25. Xu, C., Balents, L.: Phys. Rev. Lett. 121, 087001 (2018)

    ADS  Google Scholar 

  26. Padhi, B., Setty, C., Phillips, P.W.: Nano Lett. 18, 6175 (2018)

    ADS  Google Scholar 

  27. Padhi, B., Phillips, P.W.: Phys. Rev. B. 99, 205141 (2019)

    ADS  Google Scholar 

  28. Guinea, F., Walet, N.R.: Proc. Natl. Acad. Sci. 115, 13174 (2018)

    ADS  Google Scholar 

  29. Yuan, N.F.Q., Fu, L.: Phys. Rev. B. 98, 045103 (2018)

    ADS  Google Scholar 

  30. You, Y.-Z., Vishwanath, A.: Quantum Mater. 4, 16 (2019)

    ADS  Google Scholar 

  31. Pizarro, J.M., Calderón, M.J., Bascones, E.: J. Phys. Commun. 3, 035024 (2019)

    ADS  Google Scholar 

  32. Chattopadhyay, A., Bag, S., Krishnamurthy, H.R., Garg, A.: Phys. Rev. B. 99, 155127 (2019)

    ADS  Google Scholar 

  33. Lee, J.Y., Khalaf, E., Liu, S., Liu, X., Hao, Z., Kim, P., Vishwanath, A.: arXiv:1903.08685v2 [cond-mat.str-el] (2019)

  34. Chen, W., Chu, Y., Huang, T. Ma, T.: arXiv:1903.01701v1 [cond-mat.str-el] (2019)

  35. Gu, X., Chen, C., Leaw, J.N., Laksono, E., Pereira, V.M., Vignale, G., Adam, S.: arXiv:1902.00029v1 [cond-mat.supr-con] (2019)

  36. Isobe, H., Yuan, N.F.Q., Fu, L.: Phys. Rev. X. 8, 041041 (2018)

  37. Sherkunov, Y., Betouras, J.J.: Phys. Rev. B. 98, 205151 (2018)

    ADS  Google Scholar 

  38. Wu, X.-C., Jian, C.-M., Xu, C.: Phys. Rev. B. 99, 161405(R) (2019)

    ADS  Google Scholar 

  39. Bianconi A.: Superstripes Press Science Series No. 15 (Rome, 2018) pp. 4–5; https://www.superstripes.net/science/Bilateral-China-Italy_ebook.pdf#page=13

  40. Tang, Q.K., Yang, L., Wang, D., Zhang, F.-C., Wang, Q.-H.: Phys. Rev. B. 99, 094521 (2019)

    ADS  Google Scholar 

  41. Dóra, B.: Physics. 11, 84 (2018)

    Google Scholar 

  42. Lin, Y.-P., Nandkishore, R.M.: Phys. Rev. B. 98, 214521 (2018)

    ADS  Google Scholar 

  43. González, J., Stauber, T.: Phys. Rev. Lett. 122, 026801 (2019)

    ADS  Google Scholar 

  44. Lee, K., Hazra, T., Randeria, M., Trivedi, N.: Phys. Rev. B. 99, 184514 (2019)

  45. Volovik, G.E.: JETP Lett. 107, 516 (2018)

    ADS  Google Scholar 

  46. Kim, Y., Yun, H., Nam, S.-G., Son, M., Lee, D.S., Kim, D.C., Seo, S., Choi, H.C., Lee, H.-J., Lee, S.W., Kim, J.S.: Phys. Rev. Lett. 110, 096602 (2013)

  47. Li, H., Wei, X., Wu, G., Gao, S., Chen, Q., Peng, L.-M.: Ultramicroscopy. 193, 90 (2018)

    Google Scholar 

  48. Patel, H., Huang, L., Kim, C.-J., Park, J., Graham, M.W.: Nat. Commun. 10, 1445 (2019)

    ADS  Google Scholar 

  49. Harshman, D.R., Fiory, A.T., Dow, J.D.: J. Phys. Condens. Matter. 23, 295701 (2011) corrigendum, J. Phys. Condens. Matter. 23, 349501 (2011)

  50. Harshman, D.R., Fiory, A.T.: J. Phys. Condens. Matter. 29, 445702 (2017) A typographical error exists at the end of section 3 which should read, “ℓ = (A/σ)1/2 = 2.883 Å,” with TC0 remaining unchanged

    ADS  Google Scholar 

  51. Harshman, D.R., Fiory, A.T.: J. Phys. Condens. Matter. 29, 145602 (2017)

    ADS  Google Scholar 

  52. Harshman, D.R., Fiory, A.T.: Phys. Rev. B. 86, 144533 (2012)

    ADS  Google Scholar 

  53. Harshman, D.R., Fiory, A.T.: J. Phys. Chem. Solids. 85, 106 (2015)

    ADS  Google Scholar 

  54. Harshman, D.R., Fiory, A.T.: J. Phys. Condens. Matter. 24, 135701 (2012)

    ADS  Google Scholar 

  55. Harshman, D.R., Fiory, A.T.: Phys. Rev. B. 90, 186501 (2014)

    ADS  Google Scholar 

  56. Harshman, D.R., Fiory, A.T.: J. Supercond. Nov. Magn. 28, 2967 (2015)

    Google Scholar 

  57. Aslamasov, L.G., Larkin, A.I.: Fiz. Tverd. Tela (Leningrad). 10, 1104 (1968) Sov. Phys. – Solid State 10, 875 (1968)

  58. Berezinskii, V.L.: Sov. Phys. JETP. 32, 493 (1971) Zh. Eksp. Teor. Fiz. 59, 907 (1970)

  59. Berezinskii, V.L.: Sov. Phys. JETP. 34, 610 (1972) Zh. Eksp. Teor. Fiz. 61, 1144 (1971)

  60. Kosterlitz, J.M., Thouless, D.J.: J. Phys. C Solid State Phys. 6, 1181 (1973)

    ADS  Google Scholar 

  61. Halperin B.I., Nelson D.R.: J. Low Temp. Phys.36, 599 (1979)

  62. Rode, J.C., Smirnov, D., Belke, C., Schmidt, H., Haug, R.J.: Ann. Phys. 529, 1700025 (2017)

    Google Scholar 

  63. Brihuega, I., Mallet, P., González-Herrero, H., Trambly de Laissardière, G., Ugeda, M.M., Magaud, L., Gómez-Rodríguez, J.M., Ynduráin, F., Veuillen, J.-Y.: Phys. Rev. Lett. 109, 196802 (2012)

    ADS  Google Scholar 

  64. Neek-Amal, M., Xu, P., Qi, D., Thibado, P.M., Nyakiti, L.O., Wheeler, V.D., Myers-Ward, R.L., Eddy Jr., C.R., Gaskill, D.K., Peeters, F.M.: Phys. Rev. B. 90, 064101 (2014)

    ADS  Google Scholar 

  65. Yin, L.-J., Qiao, J.-B., Zuo, W.-J., Li, W.-T., He, L.: Phys. Rev. B. 92, 081406(R) (2015)

    ADS  Google Scholar 

  66. Li, G., Luican, A., Lopes dos Santos, J.M.B., Castro Neto, A.H., Reina, A., Kong, J., Andrei, E.Y.: Nat. Phys. 6, 109 (2010)

    Google Scholar 

  67. Gargiulo, F., Yazyev, O.V.: 2D Mater. 5, 015019 (2018)

    Google Scholar 

  68. Uchida, K., Furuya, S., Iwata, J.-I., Oshiyama, A.: Phys. Rev. B. 90, 155451 (2014)

    ADS  Google Scholar 

  69. Jain, S.K., Juričić, V., Barkema, G.T.: 2D Mater. 4, 015018 (2017)

    Google Scholar 

  70. Carr, S., Fang, S., Jarillo-Herrero, P., Kaxiras, E.: Phys. Rev. B. 98, 085144 (2018)

    ADS  Google Scholar 

  71. Koller, M., Steiner, H., Landa, M., Nieto, A., Agarwal, A.: Acta Phys. Pol. A. 128, 670 (2015)

    Google Scholar 

  72. Jaeger, H.M., Haviland, D.B., Orr, B.G., Goldman, A.M.: Phys. Rev. B. 40, 182 (1989)

    ADS  Google Scholar 

  73. Cao, Y., Chowdhury, D., Rodan-Legrain, D., Rubies-Bigordà, O., Watanabe, K., Taniguchi, T., Senthil, T., Jarillo-Herrero, P.: arXiv:1901.03710v1 [cond-mat.str-el] (2019)

  74. Stepanov, N.A., Skvortsov, M.A.: Phys. Rev. B. 97, 144517 (2018)

  75. Maki, K.: Progr. Theor. Phys. 40, 193 (1968)

    ADS  Google Scholar 

  76. Thompson, R.S.: Phys. Rev. B. 1, 327 (1970)

    ADS  Google Scholar 

  77. Tinkham, M.: Introduction to Superconductivity, 2nd edn. McGraw Hill, New York (1996) chapter 5-5.1

    Google Scholar 

  78. Kadin, A.M., Epstein, K., Goldman, A.M.: Phys. Rev. B. 27, 6691 (1983)

    ADS  Google Scholar 

  79. Fiory, A.T., Hebard, A.F., Glaberson, W.I.: Phys. Rev. B. 28, 5075 (1983)

    ADS  Google Scholar 

  80. Abraham, D.W., Lobb, C.J., Tinkham, M., Klapwijk, T.M.: Phys. Rev. B. 26, 5268(R) (1982)

    ADS  Google Scholar 

  81. Yoo, H., Engelke, R., Carr, S., Fang, S., Zhang, K., Cazeaux, P., Sung, S.H., Hovden, R., Tsen, A.W., Taniguchi, T., Watanabe, K., Yi, G.-C., Kim, M., Luskin, M., Tadmor, E.B., Kaxiras, E., Kim, P.: Nat. Mater. 18, 448 (2019)

    ADS  Google Scholar 

  82. Li, L., Wang, Y., Komiya, S., Ono, S., Ando, Y., Gu, G.D., Ong, N.P.: Phys. Rev. B. 81, 054510 (2010)

    ADS  Google Scholar 

  83. Harshman, D.R., Mills Jr., A.P.: Phys. Rev. B. 45, 10684 (1992)

    ADS  Google Scholar 

  84. Shen, C., Li, N., Wang, S., Zhao, Y., Tang, J., Liu, J., Tian, J., Chu, Y., Watanabe, K., Taniguchi, T., Yang, R., Meng, Z. Y., Shi. D., Zhang, G.: arXiv:1903.06952v1 [cond-mat.supr-con] (2019)

  85. Liu, X., Hao, Z., Khalaf, E., Lee, J. Y., Watanabe, K., Taniguchi, T., Vishwanath, A., Kim, P.: arXiv:1903.08130v2 [cond-mat.mes-hall] (2019)

  86. Leemann, C., Lerch, P., Theron, R.: Helv. Phys. Acta. 60, 128 (1987)

  87. Leemann, C., Lerch, P., Racine, G.-A., Martinoli, P.: Phys. Rev. Lett. 56, 1291 (1986)

    ADS  Google Scholar 

  88. Heersche, H.B., Jarillo-Herrero, P., Oostinga, J.B., Vandersypen, L.M.K., Morpurgo, A.F.: Nature. 446, 56 (2007)

    ADS  Google Scholar 

  89. Hazra, T., Verma, N., Randiera, M.: arXiv:1811.12428v2 [cond-mat.supr-con] (2018)

  90. Törmä, P., Liang, L., Peotta, S.: Phys. Rev. B. 98, 220511(R) (2018)

    ADS  Google Scholar 

  91. Kamarás, K., Herr, S.L., Porter, C.D., Tache, N., Tanner, D.B., Etemad, S., Venkatesan, T., Chase, E., Inam, A., Wu, X.D., Hedge, M.S., Dutta, B.: Phys. Rev. Lett. 64, 84 (1990)

    ADS  Google Scholar 

  92. Fiory, A.T., Hebard, A.F., Eick, R.H., Mankiewich, P.M., Howard, R.E., O’Malley, M.L.: Phys. Rev. Lett. 65, 3441 (1990)

    ADS  Google Scholar 

  93. Romero, D.B., Porter, C.D., Tanner, D.B., Forro, L., Mandrus, D., Mihaly, L., Carr, G.L., Williams, G.P.: Phys. Rev. Lett. 68, 1590 (1992)

    ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the College of William and Mary, New Jersey Institute of Technology and The University of Notre Dame. We also thank Y. Cao for supplemental information.

Funding

This study was supported by Physikon Research Corporation (Project No. PL-206) and the New Jersey Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale R. Harshman.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harshman, D.R., Fiory, A.T. High-TC Superconductivity Originating from Interlayer Coulomb Coupling in Gate-Charged Twisted Bilayer Graphene Moiré Superlattices. J Supercond Nov Magn 33, 367–378 (2020). https://doi.org/10.1007/s10948-019-05183-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05183-9

Keywords

Navigation