Skip to main content
Log in

Dependence of Fe Doping and Milling on TiO2 Phase Transformation: Optical and Magnetic Studies

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Five weight percent of Fe-doped TiO2 nanoparticles were prepared via ball milling route. The effect of both doping and milling on the evolution of structure and microstructure alongside with optical and magnetic properties was investigated. XRD analysis revealed the coexistence of all TiO2 phases, namely anatase, brookite, and rutile with a signature of Fe cluster; meanwhile, the phase ratio changed with milling time and the dissolution of Fe dopant within TiO2 lattice. The crystallite size varies in the range of 26–44 nm with a minimum value achieved for 10 h of milling. FTIR spectroscopy confirmed the presence of characteristic functional groups belonging to TiO2 phase. The agglomeration of Fe/TiO2 nanopowders into large clusters was observed. Raman analysis showed a variation in peak positions and broadening as function of milling time and subsequently Fe doping level. UV–Vis spectroscopy manifested an increase in the absorption accompanied with a red shift and a decrease in the band gap energy from 2.57 to 2.28 eV. A strong ferromagnetic behavior was achieved, where the saturation magnetization was found to increase considerably in the range 18.1–40.15 emu/g. The appearance of ferromagnetism was associated with the dissolution of Fe with strong magnetic moment within TiO2 host lattice as well as the presence of Fe metal for longer milling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Álvaro, R.J., Diana, N.D., María, A.M.: Impedance analysis of TiO2 nanoparticles prepared by green chemical mechanism. Cont. Eng. Sci. 11, 737–744 (2018)

    Google Scholar 

  2. Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48(5–8), 53–229 (2003)

    ADS  Google Scholar 

  3. Hanaor, D.A.H., Triani, G., Sorrell, C.C.: Morphology and photocatalytic activity of highly oriented mixed phase titanium dioxide thin films. Surf. Coat. Technol. 205(12), 3658–3664 (2011)

    Google Scholar 

  4. Aruldoss, U., Kennedy, L.J., Vijaya, J.J., Sekaran, G.: Photocatalytic degradation of phenolic syntan using TiO2 impregnated activated carbon. J. Colloid Interface Sci. 355(1), 204–209 (2011)

    ADS  Google Scholar 

  5. Ho, C.Y., Lin, J.K., Wang, H.W.: Characteristics of boron decorated TiO2 nanoparticles for dye-sensitized solar cell photoanode. Int. J. Photoenergy. 2015, 1–8 (2015)

    Google Scholar 

  6. Löberg, J., Perez Holmberg, J., Mattisson, I., Arvidsson, A., Ahlberg, E.: Electronic properties of nanoparticles films and the effect on apatite-forming ability. Int. J. Dent. 2013, 1–14 (2013)

    Google Scholar 

  7. Devi, G.S., Hyodo, T., Shimizu, Y., Egashira, M.: Synthesis of mesoporous TiO2-based powders and their gas-sensing properties. Sensors Actuators B Chem. 87(1), 122–129 (2002)

    Google Scholar 

  8. Djerdj, I., Tonejc, A.M.: Structural investigations of nanocrystalline TiO2 samples. J. Alloys Compd. 413(1–2), 159–174 (2006)

    Google Scholar 

  9. Zhang, J., Zhou, P., Liu, J., Yu, J.: New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 16(38), 20382–20386 (2014)

    Google Scholar 

  10. Mironyuk, I., Tatarchuk, T., Naushad, M., Vasylyeva, H., Mykytyn, I.: Highly efficient adsorption of strontium ions by carbonated mesoporous TiO2. J. Mol. Liq. 285, 742–753 (2019)

    Google Scholar 

  11. Mironyuk, I., Tatarchuk, T., Vasylyeva, H., Gun'ko, V.M., Mykytyn, I.: Effects of chemosorbed arsenate groups on the mesoporous titania morphology and enhanced adsorption properties towards Sr(II) cations. J. Mol. Liq. 282, 587–597 (2019)

    Google Scholar 

  12. Scheringer, M.: Nanoecotoxicology: environmental risks of nanomaterials. Nat. Nanotechnol. 3, 322–323 (2008)

    ADS  Google Scholar 

  13. Gouda, M., Aljaafari, A.I.: Augmentation of multifunctional properties of cellulosic cotton fabric using titanium dioxide nanoparticles. Advances in Nanoparticles. 1, 29–36 (2012)

    Google Scholar 

  14. Baan, R., Straif, K., Grosse, Y., Secretan, B., El Ghissassi, F., Cogliano, V.: Carcinogenicity of carbon black, titanium dioxide, and talc. Lancet Oncol. 7, 295–296 (2006)

    Google Scholar 

  15. Han, F., Kambala, V.S.R., Srinivasan, M., Rajarathnam, D., Naidu, R.: Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl. Catal. A-Gen. 359, 25–40 (2009)

    Google Scholar 

  16. Mills, A., Hodgen, S., Lee, S.K.: Self-cleaning titania films: an overview of direct, lateral and remote photo-oxidation processes. Res. Chem. Intermed. 31(4), 295–308 (2005)

    Google Scholar 

  17. Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., Von Goetz, N.: Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 46, 2242–2250 (2012)

    ADS  Google Scholar 

  18. Di Paola, A., Ikeda, S., Marcì, G., Ohtani, B., & Palmisano, L. (2001). Transition metal doped TiO2: physical properties and photocatalytic behavior. Int. J. Photoenergy, 3(4), 171–176

  19. Nasralla, N., Yeganeh, M., Astuti, Y., Piticharoenphun, S., Shahtahmasebi, N., Kompanyb, A., Karimipour, M., Mendisd, B.G., Pooltone, N.R.J., Šiller, L.: Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol–gel method. Scientia Iranica F. 20(3), 1018–1022 (2013)

    Google Scholar 

  20. Vigil, E., Gonzáles, B., Zumeta, I., Domingo, C., Doménech, X., Ayllón, J.A.: Preparation of photoelectrodes with spectral response in the visible without applied bias based on photochemically deposited copper oxide inside a porous titanium dioxide film. Thin Solid Films. 489(1–2), 50–55 (2005)

    ADS  Google Scholar 

  21. Othman, S.H., Rashid, S.A., Mohd Ghazi, T.I., Abdullah, N.: Fe-doped TiO2 nanoparticles produced via MOCVD: synthesis, characterization, and photocatalytic activity. J. Nanomater. 2011, 8, (2011)

  22. Chanda, A., Rout, K., Vasundhara, M., Joshi, S.R., Singh, J.: Structural and magnetic study of undoped and cobalt doped TiO2 nanoparticles. RSC Adv. 8(20), 10939–10947 (2018)

    Google Scholar 

  23. Desireé, M., Navas, J., Sánchez-Coronilla, A., Alcántara, R., Fernández-Lorenzo, C., Martín-Calleja, J.: Highly Al-doped TiO2 nanoparticles produced by ball mill method: structural and electronic characterization. Mater. Res. Bull. 70, 704–711 (2015)

    Google Scholar 

  24. Avciata, O., Benli, Y., Gorduk, S., Koyun, O.: Ag doped TiO2 nanoparticles prepared by hydrothermal method and coating of the nanoparticles on the ceramic pellets for photocatalytic study: surface properties and photoactivity. Journal of Engineering Technology and Applied Sciences. 1(1), 34–50 (2016)

    Google Scholar 

  25. Zhang, Y., Shen, Y., Gu, F., Wu, M., Xie, Y., Zhang, J.: Influence of Fe ionsin characteristics and optical properties of mesoporous titanium oxide thin films. Appl. Surf. Sci. 256(1), 85–89 (2009)

    ADS  Google Scholar 

  26. Ali, T., Tripathi, P., Azam, A., Raza, W., Ahmed, A.S., Ahmed, A., Muneer, M.: Photocatalytic performance of Fe-doped TiO2 nanoparticles under visible-light irradiation. Mater. Res. Express. 4, 015022 (2017)

    ADS  Google Scholar 

  27. Prinz, G. A. (2001). Science. https://doi.org/10.1126/science. 282.5394. 1660 282, 1660 (1998). Google Scholar Crossref, CAS

  28. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., Von Molnar, S., Roukes, M.L., Treger, D.M.: Spintronics: a spin-based electronics vision for the future. Science. 294(5546), 1488–1495 (2001)

    ADS  Google Scholar 

  29. Ohno, H.: Making nonmagnetic semiconductors ferromagnetic. Science. 281(5379), 951–956 (1998)

    ADS  Google Scholar 

  30. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, E.D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science. 287(5455), 1019–1022 (2000)

    ADS  Google Scholar 

  31. Choudhury, B., Choudhury, A.: Structural, optical and ferromagnetic properties of Cr doped TiO2 nanoparticles. Mater. Sci. Eng. B. 178(11), 794–800 (2013)

    Google Scholar 

  32. Santara, B., Pal, B., Giri, P.K.: Signature of strong ferromagnetism and optical properties of Co doped TiO2 nanoparticles. J. Appl. Phys. 110(11), 114322 (2011)

    ADS  Google Scholar 

  33. Santara, B., Giri, P.K., Dhara, S., Imakita, K., Fujii, M.: Oxygen vacancy-mediated enhanced ferromagnetism in undoped and Fe-doped TiO2 nanoribbons. J. Phys. D. Appl. Phys. 47(23), 235304 (2014)

    ADS  Google Scholar 

  34. Atsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Koinuma, H.: Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science. 291(5505), 854–856 (2001)

    ADS  Google Scholar 

  35. Wang, Q., Liu, X., Wei, X., Dai, J., Li, W.: Ferromagnetic property of co and Ni doped TiO2 nanoparticles. J. Nanomater. 1–5 (2015)

    Google Scholar 

  36. Nithyaa, N., Jaya, N.V.: Structural, optical, and magnetic properties of Gd-doped TiO2 nanoparticles. J. Supercond. Nov. Magn. 31, 4117–4126 (2018)

    Google Scholar 

  37. Sun, J., Zhang, J.X., Fu, Y.Y., Hu, G.X.: Microstructural evolution of an Al67Mn8Ti24Nb1 alloy during mechanical milling and subsequent annealing process. Mater. Sci. Eng. A. 329, 703–707 (2002)

    Google Scholar 

  38. Hang, D.L., Mukhtar, A., Kong, C., Munroe, P.: Synthesis and thermal stability of Cu-(2.5-10) vol.% Al2O3nanocomposite powders by high energy mechanical milling. J. Phys. Conf. Ser. 144(1), 012028 (2009)

    Google Scholar 

  39. Yadav, T.P., Mukhopadhyay, N.K., Tiwari, R.S., Srivastava, O.N.: Studies on Al–Ni–Fe decagonal quasicrystalline alloy prepared by mechanical alloying. Philos. Mag. 87(18–21), 3117–3125 (2007)

    ADS  Google Scholar 

  40. Lutterotti, L. (2016). Microstructure Analysis by MAUD.http://maud.radiographema.com/

    Google Scholar 

  41. Rietveld, H.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2(2), 65–71 (1969)

    Google Scholar 

  42. Li, J.G., Ishigaki, T., Sun, X.: Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: phase-selective synthesis and physicochemical properties. J. Phys. Chem. C. 111(13), 4969–4976 (2007)

    Google Scholar 

  43. Bose, P., Pradhan, S.K., Sen, S.: Rietveld analysis of polymorphic transformations of ball milled anatase TiO2. Mater. Chem. Phys. 80(1), 73–81 (2003)

    Google Scholar 

  44. Begin-Colin, S., Girot, T., Le Caër, G., Mocellin, A.: Kinetics and mechanisms of phase transformations induced by ball-milling in anatase TiO2. J. Solid State Chem. 149(1), 41–48 (2000)

    ADS  Google Scholar 

  45. Garza-Arévalo, J.I., García-Montes, I., Reyes, M.H., Guzmán-Mar, J.L., Rodríguez-González, V., Reyes, L.H.: Fe doped TiO2 photocatalyst for the removal of As (III) under visible radiation and its potential application on the treatment of As-contaminated groundwater. Mater. Res. Bull. 73, 145–152 (2016)

    Google Scholar 

  46. Choudhury, B., Verma, R., Choudhury, A.: Oxygen defect assisted paramagnetic to ferromagnetic conversion in Fe doped TiO2 nanoparticles. RSC Adv. 4(55), 29314–29323 (2014)

    Google Scholar 

  47. Palaniandy, S., Jamil, N.H.: Influence of milling conditions on the mechanochemical synthesis of CaTiO3 nanoparticles. J. Alloys Compd. 476(1–2), 894–902 (2009)

    Google Scholar 

  48. Carneiro, J.O., Azevedo, S., Fernandes, F., Freitas, E., Pereira, M., Tavares, C.J., Teixeira, V.: Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties. J. Mater. Sci. 49(21), 7476–7488 (2014)

    ADS  Google Scholar 

  49. Deiana, C., Minella, M., Tabacchi, G., Maurino, V., Fois, E., Martra, G.: Shape-controlled TiO2 nanoparticles and TiO2 P25 interacting with CO and H2O2 molecular probes: a synergic approach for surface structure recognition and physico-chemical understanding. Phys. Chem. Chem. Phys. 15(1), 307–315 (2013)

    Google Scholar 

  50. Jun, D., Qi, W., Shan, Z., Xin, G., Jiao, L., Haizhi, G., Wenlong, Z., Hailong, P., Jianguo, Z.: Effect of hydroxyl groups onhydrophilic and photocatalytic activities of rare earth doped titanium dioxide thin films. J. Rare Earths. 33(2), 148–153 (2015)

    Google Scholar 

  51. Ganesh, I., Kumar, P.P., Gupta, A.K., Sekhar, P.S., Radha, K., Padmanabham, G., Sundararajan, G.: Preparation and characterization of Fe-doped TiO2 powders for solar light response and photocatalytic applications. Processing and Application of Ceramics. 6(1), 21–36 (2012)

    Google Scholar 

  52. Khan, H., Swati, I.K.: Fe3+-doped anatase TiO2 with d–d transition, oxygen vacancies and Ti3+ centers: synthesis, characterization, UV–vis photocatalytic and mechanistic studies. Ind. Eng. Chem. Res. 55(23), 6619–6633 (2016)

    Google Scholar 

  53. Zielińska, B., Borowiak-Palen, E., Kalenczuk, R.J.: A study on the synthesis, characterization and photocatalytic activity of TiO2 derived nanostructures. Mater. Sci.-Pol. 28(3), 625–637 (2010)

    Google Scholar 

  54. Van Minh, N., Long, D.H., Khoi, N.T., Jung, Y., Kim, S.J., Yang, I.S.: Raman studies of Ti1-x FexO2 nanoparticles. IEEE Trans. Nanotechnol. 7(2), 177–180 (2008)

    ADS  Google Scholar 

  55. Tompsett, G.A., Bowmaker, G.A., Cooney, R.P., Metson, J.B., Rodgers, K.A., Seakins, J.M.: The Raman spectrum of brookite, TiO2 (Pbca, Z = 8). J. Raman Spectrosc. 26, 57–62 (1995)

    ADS  Google Scholar 

  56. Alexandrescu, R., Morjan, I., Scarisoreanu, M., Birjega, R., Popovici, E., Soare, I., Prodan, G.: Structural investigations on TiO2 and Fe-doped TiO2 nanoparticles synthesized by laser pyrolysis. Thin Solid Films. 515(24), 8438–8445 (2007)

    ADS  Google Scholar 

  57. Wu, Q., Zheng, Q., van de Krol, R.: Creating oxygen vacancies as a novel strategy to form tetrahedrally coordinated Ti4+ in Fe/TiO2 nanoparticles. J. Phys. Chem. C. 116(12), 7219–7226 (2012)

    Google Scholar 

  58. Khoshnevisan, B., Marami, M.B., Farahmandjou, M.: Fe3+-doped anatase TiO2 study prepared by new sol-gel precursors. ChinesePhysicsLetters. 35(2), 027501 (2018)

    ADS  Google Scholar 

  59. Marami, M.B., Farahmandjou, M., Khoshnevisan, B.: Sol–gel synthesis of Fe-doped TiO2 nanocrystals. J. Electron. Mater. 47(7), 3741–3748 (2018)

    ADS  Google Scholar 

  60. Vargas, X.M., Marin, J.M., Restrepo, G.: Characterization and photocatalytic evaluation (UV-visible) of Fe-doped TiO2 systems calcined at different temperatures. J. Adv. Oxid. Technol. 18(1), 129–138 (2015)

    Google Scholar 

  61. Fabbiyola, S., Sailaja, V., Kennedy, L.J., Bououdina, M., Vijaya, J.J.: Optical and magnetic properties of Ni-doped ZnO nanoparticles. J. Alloys Compd. 694, 522–531 (2017)

    Google Scholar 

  62. Khatoon, S., Wani, I.A., Ahmed, J., Magdaleno, T., Al-Hartomy, O.A., Ahmad, T.: Effect of high manganese substitution at ZnO host lattice using solvothermal method: structural characterization and properties. Mater. Chem. Phys. 138(2–3), 519–528 (2013)

    Google Scholar 

  63. Ghosh, S., Khan, G.G., Mandal, K., Samanta, A., Nambissan, P.M.G.: Evolution of vacancy-type defects, phase transition, and intrinsic ferromagnetism during annealing of nanocrystalline TiO2 studied by positron annihilation spectroscopy. J. Phys. Chem. C. 117(16), 8458–8467 (2013)

    Google Scholar 

  64. Assadi, M.H.N., Hanaor, D.A.: Theoretical study on copper’s energetics and magnetism in TiO2 polymorphs. J. Appl. Phys. 113(23), 233913 (2013)

    ADS  Google Scholar 

  65. Hou, Q., Zhao, C., Guo, S., Mao, F., Zhang, Y.: Effect on electron structure and magneto-optic property of heavy W-doped anatase TiO2. PLoS One. 10(5), e0122620 (2015)

    Google Scholar 

  66. Patel, S.K.S., Gajbhiye, N.S.: Intrinsic room-temperature ferromagnetism of V-doped TiO2 (B) nanotubes synthesized by the hydrothermal method. Solid State Commun. 151(20), 1500–1503 (2011)

    ADS  Google Scholar 

  67. Amade, R., Heitjans, P., Indris, S., Finger, M., Haeger, A., Hesse, D.: Defect formation during high-energy ball milling in TiO2 and its relation to the photocatalytic activity. J. Photochem. Photobiol. A Chem. 207(2–3), 231–235 (2009)

    Google Scholar 

  68. Pongwan, P., Inceesungvorn, B., Wetchakun, K., Phanichphant, S., Wetchakun, N.: Highly efficient visible-light-induced photocatalytic activity of Fe-doped TiO2 nanoparticles. Eng. J. 16(3), 143–152 (2012)

    Google Scholar 

  69. Ismail, M. A ., Memo, N. k., Hedhili, M. N., Anjum, D. H., Bhunia, M., & Suk Ho Chung, S. H. Rhodamine-B dye photodegradation on Fe-doped TiO2 nanoparticles synthesized by flame spray pyrolysis. Nineteenth International Water Technology Conference, IWTC19 Sharm El Sheikh, 21–23 April 2016

  70. Zhang, H., Xu, Y., Yang, W., Lin, R.: Structural and magnetic evolution of Fe-doped TiO2 nanoparticles synthesized by sol-gel method. J. Electroceram. 38(1), 104–110 (2017)

    Google Scholar 

  71. Zahid, R., Manzoor, M., Rafiq, A., Ikram, M., Nafees, M., Butt, A.R., Ali, S.: Influence of iron doping on structural, optical and magnetic properties of TiO2 nanoparticles. Electron. Mater. Lett. 14(5), 587–593 (2018)

    ADS  Google Scholar 

  72. Wang, Y., Zhang, R., Li, J., Li, L., Lin, S.: First-principles study on transition metal-doped anatase TiO2. Nanoscale Res. Lett. 9(1), 46 (2014)

    ADS  Google Scholar 

  73. Wu, H.C., Li, S.H., Lin, S.W.: Effect of Fe concentration on Fe-doped anatase TiO2 from GGA. Int. J. Photoenergy. 1–6 (2012)

  74. Mallia, G., Harrison, N.M.: Magnetic moment and coupling mechanism of iron-doped rutile TiO2 from first principles. Phys. Rev. B. 75(16), 165201 (2007)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bououdina.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kissoum, Y., Mekki, D.E., Bououdina, M. et al. Dependence of Fe Doping and Milling on TiO2 Phase Transformation: Optical and Magnetic Studies. J Supercond Nov Magn 33, 427–440 (2020). https://doi.org/10.1007/s10948-019-05169-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05169-7

Keywords

Navigation