Electrical, Structural, and Thermal Properties of Ferrite/Superconductor (Ni0.5Zn0.5Fe2O4)x/YBa2Cu3O7-δ) Nanocomposite Materials

  • Ahmed Abo AraisEmail author
  • M.A.T. Dawoud
  • M.S. Shams
  • Eslam Elbehiry
Original Paper


The superconductor YBa2Cu3O7-δ (Y123) is prepared by the solid-state route, while the nanosized Ni0.5Zn0.5Fe2O4 (Ni-Zn ferrite) is synthesized via citric acid sol-gel technique. The composite material of the type (Ni0.5Zn0.5Fe2O4)x/YBa2Cu3O7-δ, where x = 0.00, 0.03, 0.10, and 0.50 wt%, is prepared by a modified solid-state method to study the effect of doping Ni-Zn nanosized ferrite on the superconducting, structure, and thermal properties of Y123. The prepared samples show Meissner effect which confirmed the presence of superconducting phase at liquid nitrogen temperature (77 K). The prepared samples have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion of X-ray (EDX), infra-red (IR) spectroscopy, thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), DC resistance by four-probe, and critical current density measurements. It was found that by increasing Ni0.5Zn0.5Fe2O4 nanoparticles in the Y123 compound, the unit cell volume of the orthorhombic phase decreases, but the transition temperature Tc and critical current density Jc decrease for low doping (x = 0.03 wt%) then increase (x = 0.10 and 0.50 wt%) for Ni0.5Zn0.5Fe2O4 doped in Y123. The transport properties of the (Ni0.5Zn0.5Fe2O4)x/YBa2Cu3O7-δ composite as electrical resistance R, Tc, and Jc are interpreted according to Bean’s critical state model and charge-vortex interaction combined with vortex pinning in Y123 high-Tc mixed-state type-II superconductor.


The critical current density Jc decreased for low doping of nanosized Ni-Zn ferrite into Y123 with ratio of 0.03 wt% and increased by increasing doping ratio to 0.50 wt%. The physical properties are improved by the coexistence of the superconductor Y123 and nanosized Ni-Zn ferrites in nanocomposite material.


Composite materials Superconductor Y123 Ni-Zn nanoferrites Thermogravimetric analysis TGA X-ray diffraction XRD Scanning electron microscopy SEM Infar-red IR spectroscopy Critical current density Jc 


  1. 1.
    Ben Azzouz, F., Zouaoui, M., Mani, K.D., Annabi, M., Van Tendeloo, G., Ben Salem, M.: Physica C. 442, 13–19 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Öztürk, A., Düzgün, I.: S. Celebi. 495, 104–107 (2010)Google Scholar
  3. 3.
    Moutalibi, N., M’chirgui, A.: Physica C. 469, 95–101 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Chen, S.Y., Hsieh, P.C., Chen, I.G.: J Mater Res. 843, 19 (2004)Google Scholar
  5. 5.
    Albiss, B.A., Al-Rawashdeh, N., Jabal, A.A., Gharaibeh, M., Obaidat, I.M., Hasan, M.K., Azez, K.A., Supercond, J.: Nov.Magn. 23, 1333 (2010)CrossRefGoogle Scholar
  6. 6.
    Campbell, T.A., Haugan, T.J., Maartense, I., Murphy, J., Brunke, L., Barnes, P.N.: Flux pinning effects of Y2O3 nanoparticulate dispersions in multilayered YBCO thin films. Physica C. 423(1), 1–8 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Khan, N.A., Aziz, S.: J.Alloy. Compd. 183, 538 (2012)Google Scholar
  8. 8.
    Dadras, S., Liu, Y., Chai, Y.S., Daadmehr, V., Kim, K.H.: Increase of critical current density with doping carbon nano-tubes in YBa2Cu3O7−δ. Physica C. 469(55), 55–59 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Snezhko, A., Prozorov, T., Prozorov, R.: Magnetic nanoparticles as efficient bulk pinning centers in type-II superconductors. Phys. Rev. B. 71, 024527 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Bulaevskii, L.N., Chundnovsky, E.M., Maley, M.P.: Magnetic pinning in superconductor-ferromagnet multilayers. Appl. Phys. Lett. 76, 2594–2596 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Bouchoucha, I., Ben Azzouz, F., Ben Salem, M.: Excess conductivity studies in Zn0.95Mn0.05O and ZnO added YBa2Cu3O y superconductors. J. Supercond. Nov. Magn. 24, 345–350 (2011)CrossRefGoogle Scholar
  12. 12.
    Abd-Ghani, S.N., Abd-Shukor, R., Kong, W.: Adv. Mater. Res. 501, 309 (2012)CrossRefGoogle Scholar
  13. 13.
    R. Awad, A.I. Abou-Aly, N.H. Mohammed, S. Isber, H.A. Motaweh, D. ElSaid Bakeer, J.Alloy.Compd610,614(2014)Google Scholar
  14. 14.
    Slimani, Y., Hannachi, E., Ben Salem, M.K., Hamrita, A., Ben Salem, M., BenAzzouz, F.: Excess conductivity study in nano-CoFe2O4-added YBa2Cu3O7−d and Y3Ba5Cu8O18±x superconductors. J. Supercond. Nov. Magn. 28, 3001–3010 (2015)CrossRefGoogle Scholar
  15. 15.
    Kim, J.S., Chang, W.H.: The effect of calcining temperature on the magnetic properties of the ultra-fine NiCuZn-ferrites. Mater. Res. Bull. 44, 633–637 (2009)CrossRefGoogle Scholar
  16. 16.
    Manova, E., Tsoncheva, T., Estournes, C., Paneva, D., Tenchev, K., Mitov, I., Petrov, L.: Nanosized iron and iron–cobalt spinel oxides as catalysts for methanol decomposition. Appl. Catal A. 300(2), 170–180 (2006)CrossRefGoogle Scholar
  17. 17.
    Zhi, J., Wang, Y., Lu, Y., Ma, J., Luo, G.: Reac Funct Polym. 66(12), 1552–1558 (2006)CrossRefGoogle Scholar
  18. 18.
    Taliani, C., Zamboni, R., Licci, F.: Bulk phonon modes of YBa2Cu3O7 from infrared absorption at 300-30K. Solid State Comm. 64(6), 911–913 (1987)ADSCrossRefGoogle Scholar
  19. 19.
    Dawoud, M.A.T., El-Hamalawy, A.A., Ghali, E.A.: J. Mater. Sci. 27, 4016 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    Fukuzumi, Y., Mizuhashi, K., Vchida, S.: Zn-doping effect on the c-axis charge dynamics of underdoped high-Tc cuprates. Phys.Rev.B. 61, 627–633 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    Watte, J., Els, G., Andrzejak, C., Guntherod, G., Moshchalkov, V.V., Wuyts, B., Maenhoudt, M., Osquiguil, E., Silverans, R.E., Bruynseraede, Y.: J.of Superconductivity. 7(1), 131 (1994)ADSCrossRefGoogle Scholar
  22. 22.
    Saito, Y., Sawada, H., Iwazumi, T., Abe, Y., Ikeda, H., Yoshizaki, R.: Solid State Comm. 64(7), 1047 (1987)ADSCrossRefGoogle Scholar
  23. 23.
    Abo Arais, A., Dawoud, M.A.T.: Turk. J. Phys. 29, 33–41 (2005)Google Scholar
  24. 24.
    Dung-Hailee and Matthew, Fisher, P.A.: Inter. J. Mod. Phys .B. 5, Nos. 16&17, 2675–2699 (1991)CrossRefGoogle Scholar
  25. 25.
    Bean, C.P.: Magnetization of high-field superconductors. Rev. Mod. Phys. 31, 31–31, 39 (1964)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics and Mathematical Engineering Department, Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt

Personalised recommendations