Stability, Electronic and Magnetic Properties of Rare Earth (Eu, Tm) Implanted InGaN

  • S. BelhachiEmail author
Original Paper


The electronic structure and magnetic behavior of InGaN:RE (RE = Eu, Tm) have been studied by using scalar relativistic full-potential linear augmented-plane-wave plus local orbital (FPLAPW + lo) calculations with LSDA+U approximation. Band structure and density of states are analyzed. It appears that the In-site is the preferred site for doping InGaN alloy with rares earth (Eu, Tm) from the formation energy. Our study reveals that these materials are semiconductors with a direct band gap of 1.2345 eV and 1.3657 eV for InGaN:Eu and InGaN:Tm respectively. The total energy of the FM phase is lower than the AFM total energy; this confirms the fact that the ground state at zero temperature is ferromagnetic. A small-induced magnetic moment on other nonmagnetic atoms (Ga, In, and N) and the total magnetic moment of these compounds is mainly due to RE-4f states.


InGaN alloy Europium Thulium DMS Direct band gap 


  1. 1.
    Zakharenkov, L.F., Kasatkin, V.A., Kesamanly, F.P., Samorukov, B.E., Sokolova, M.A.: Soviet Phys.-Semicond. 15, 946 (1981)Google Scholar
  2. 2.
    Kasatkin, V.A., Kesamanly, F.P., Makarenkov, V.G., Masterov, V.F., Samorukov, B.E.: Soviet Phys.-Semicond. 14, 1902 (1980)Google Scholar
  3. 3.
    Kasatkin, V.A., Kesamanly, F.P., Samorukov, B.E.: Soviet Phys.-Seniicond. 15, 352 (1981)Google Scholar
  4. 4.
    Favennec, P.N., L’Haridon, H., Salvi, M., Moutonnet, D., LeGuillou, Y.: Electron. Lett. 25, 718 (1989)Google Scholar
  5. 5.
    Steckl, A.J., Garter, M.J., Lee, D.S., Heikenfeld, J., Birkhahn, R.H.: Appl. Phys. Lett. 75, 2184 (1999)Google Scholar
  6. 6.
    Roqan, I. S., O'Donnell, K. P., Martin, R. W., Trager-Cowan, C., Matias, V., Vantomme, A., Lorenz, K., Alves, E., and Watson, I. M.: J. Appl. Phys. 106, 083508 (2009) Google Scholar
  7. 7.
    Hori, Y., Andreev, T., Biquard, X., Monroy, E., Jalabert, D., Le Si Dang, M., Tanaka, O.O., Daudin, B.: Phys Stat Sol (c). 2, 2373 (2005)Google Scholar
  8. 8.
    Yahiaoui, Z., Kallel, T., Koubaa, T., Dammak, M., Dasari, K., Palai, R., Wang, J., Jadwisienczak, W.M.: Mater. Sci. Eng. B. 222, 26 (2017)Google Scholar
  9. 9.
    Dahal, R., Lin, J., Jiang, H., Zavada, J.: Opt. Mater. 33, 1066 (2011)Google Scholar
  10. 10.
    Feng, I.W., Cao, X.K., Li, J., Lin, J.Y., Jiang, H.X., Sawaki, N., Honda, Y., Tanikawa, T., Zavada, J.M.: Appl. Phys. Lett. 98, 081102 (2011)Google Scholar
  11. 11.
    Krishnamurthy, D., Tawil, S.N.M., Kakimi, R., Ishimaru, M., Emura, S., Hasegawa, S., Asahi, H.: Status Solidi C. 8, 497 (2011)Google Scholar
  12. 12.
    Belhachi, S., Lazreg, A., Dridi, Z., Al-Douri, Y.: J. Supercond. Nov. Magn. 31, 1767 (2018)CrossRefGoogle Scholar
  13. 13.
    Belhachi, S., Amari, S., Bouhafs, B.: Int J Comp Mat Sci Eng. 7, 1850019 (2018)CrossRefGoogle Scholar
  14. 14.
    Hömmerich, U., Nyein, E.E., Lee, D.S., Steckl, A.J., Zavada, J.M.: Appl. Phys. Lett. 83, 4556 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Nakanishi, Y., Wakahara, A., Okada, H., Yoshida, A., Ohshima, T., Itoh, H.: Phys Status Solidi B. 240, 372 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Nakanishi, Y., Wakahara, A., Okada, H., Yoshida, A., Ohshima, T., Itoh, H., Shibata, T., Tanaka, M.: Phys Status Solidi C. 0, 2623 (2003)CrossRefGoogle Scholar
  17. 17.
    Peres, M., Magalhães, S., Franco, N., Soares, M.J., Neves, A.J., Alves, E., Lorenz, K., Monteiro, T.: Microelectron. J. 40, 377 (2009)CrossRefGoogle Scholar
  18. 18.
    Nakanishi, Y., Wakahara, A., Okada, H., Yoshida, A., Ohshima, T., Itho, H.: Phys Stat Sol (c). 0(1), 461 (2002)CrossRefGoogle Scholar
  19. 19.
    Nakanishi, Y., Wakahara, A., Okada, H., Yoshida, A., Oshima, T., Itoh, H.: Phys Stat Sol (b). 240(2), 342 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Lee, D.S., Steckl, A.J.: Appl. Phys. Lett. 83, 2094 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Wakahara, A., Nakanishi, Y., Fujiwara, T., Okada, H., Yoshida, A., Ohshima, T., Kamiya, T., Kim, Y.T.: Phys Stat Sol (a). 201, 2768 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Wakahara, A., Nakanishi, Y., Fujiwara, T., Okada, H., Yoshida, A., Ohshima, T., Kamiya, T.: Phys Stat Sol (a). 202, 863 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    Belhachi, S.: Int J Mod Phys B. 32, 1850119 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    Hohenberg, P., Kohn, W.: Phys. Rev. B. 136, 864 (1964)ADSCrossRefGoogle Scholar
  25. 25.
    Kohn, W., Sham, L.J.: Phys. Rev. A. 140, 1133 (1965)ADSCrossRefGoogle Scholar
  26. 26.
    Anisimov, V.I., Zaanen, J., Andersen, O.K.: Phys. Rev. B. 44, 943 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    Anisimov, V.I., Solovyev, I.V., Korotin, M.A., Czyzyk, M.T., Sawatzky, G.A.: Phys. Rev. B. 48, 16929 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties. Technische Universit¨at Wien, Austria (2001)Google Scholar
  29. 29.
    Larson, P., Lambrecht, R.L.: Phys. Rev. B. 75, 045114 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Monkhorst, H.J., Pack, J.D.: Phys. Rev. B. 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Van de Walle, C.G.: Phys. Rev. Lett. 85, 1015 (2000)Google Scholar
  32. 32.
    Yang, M., Chang, B., Shi, F., Cheng, H., Wang, M.: Comput. Mater. Sci. 99, 306 (2015)CrossRefGoogle Scholar
  33. 33.
    Belhachi, S., Lazreg, A., and Bouhafs, B.: Spin 8, 1850011 (2018)Google Scholar
  34. 34.
    Lopez-Apreza, E., Arriaga, J., and Olguoın, D.: REVISTA MEXICANA DE FI´SICA 56, 183 (2010)Google Scholar
  35. 35.
    Murnaghan, F.D.: Proc. Natl Acad Sci U. S. A. 30, 244 (1944)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Modélisation et Simulation en Sciences des MatériauxUniversité Djillali Liabès de Sidi Bel-AbbèsSidi Bel AbbèsAlgeria

Personalised recommendations