Abstract
The unprecedented power of the brain suggests that it may process information quantum-mechanically. Since quantum processing is already achieved in superconducting quantum computers, it may imply that superconductivity is the basis of quantum computation in the brain too. Superconductivity could also be responsible for long-term memory. Following these ideas, the paper reviews the progress in the search for superconductors with high critical temperature and tries to answer the question about the superconductivity in brain. It focuses on recent electrical measurements of brain slices, in which graphene was used as a room-temperature quantum mediator, and argues that these measurements could be interpreted as providing evidence of superconductivity in the neural network of mammalian brains. The estimated critical temperature of superconducting network in the brain is rather high, 2022 ± 157 K. A similar critical temperature was predicted in the Little’s model for one-dimensional organic chains linked to certain molecular complexes. A reasonable suggestion is that superconductivity develops in microtubules inside the neurons of the brain.
Similar content being viewed by others
References
Halperin, E.H., Wolf, A.A.: Speculations of superconductivity in biological and organic systems. In: Advances in Cryogenic Engineering, vol. 17, Timmerhaus, K.D. (ed) Springer Science + Business Media LLC (1972)
Castelvecchi, D.: IBM's quantum cloud computer goes commercial. Nature. 543, 159 (2017)
Shim, Y.-P., Tahan, C.: Semiconductor-inspired design principles for superconducting quantum computing. Nat. Commun. 7, 11059 (2016)
Albarrán-Arriagada, F., Barrios, G.A., Sanz, M., Romero, G., Lamata, L., Retamal, J.C., Solano, E.: One-way quantum computing in superconducting circuits. Phys. Rev. A. 97, 032320 (2018)
Hameroff, S.: The brain is both neurocomputer and quantum computer. Cogn. Sci. 31, 1035–1045 (2007)
Weingarten, C.P., Doraiswamy, P.M., Fisher, M.P.A.: A new spin on neural processing: quantum cognition. Front. Hum. Neurosci. 10, 541 (2016)
Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V., Shylin, S.I.: Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature. 525, 73–76 (2015)
Gor’kov, L.P., Kresin, V.Z.: Colloquium: high pressure and road to room temperature superconductivity. Rev. Mod. Phys. 90, 011001 (2018)
Kresin, V.Z.: High-Tc hydrides: interplay of optical and acoustic modes and comments regarding the upper limit of Tc. J. of Supercond. And novel. Magn. 31, 3391 (2018)
Delft, D. van, Kes, P.: The discovery of superconductivity. Physics Today, September, 38 (2010)
Eisenstein, J.: Superconducting elements. Rev. Mod. Phys. 26, 277–291 (1954)
Daunt, J.G., Horseman, A., Mendelssohn, K.: LXX.Thermodynamical properties of some supraconductors. Phil. Mag. 27, 754–764 (1939)
Testardi, L.R., Wernick, J.H., Royer, W.A.: Superconductivity with onset above 23° K in Nb*Ge sputtered films. Solid State Comm. 15, 1–4 (1974)
Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Superconductivity at 39 K in magnesium diboride. Nature. 410, 63–64 (2001)
Mikheenko, P.: Superconductivity for hydrogen economy. J.Phys. Conf Ser. 286, 012014 (2011)
Thapa, D.K., Pandey, A.: Evidence for superconductivity at ambient temperature and pressure in nanostructures. ArXiv. 1807, 08572 (2018)
Awana, V.P.S.: Short note on superconductivity at ambient temperature and pressure in silver-embedded gold nano-particles: a goldsmith job ahead. J Supercond Novel Magn. 31, 3387 (2018)
Kresin, V.Z., Morawitz, V.H., Wolf, S.: Superconducting state; mechanisms and properties. Oxford press, Oxford (2014)
Kresin, V.Z.: Paths to room-temperature superconductivity. J Supercond Novel Magn. 31, 611 (2018)
Mermin, N.D., Wagner, H.: Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (Nov. 1966)
Hohenberg, P.C.: Existence of long-range order in one and two dimensions. Phys. Rev. 158, 383–386 (1967)
Kosterlitz, J.M., Thouless, D.J.: Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C. 6, 1181–1203 (1973)
Gao, L., Xue, Y.Y., Chen, F., Xiong, Q., Meng, R.L., Ramirez, D., Chu, C.W., Eggert, J.H., Mao, H.K.: Superconductivity up to 164 K in HgBa2 Cam−1 Cum O2m+2+δ(m=1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B. 50, 4260–4263 (1994)
Little, W.A.: Possibility of synthesizing an organic superconductor. Phys. Rev. 134, A1416–A1424 (1964)
Kresin, V., Litovchenko, C., Panasenko, A.: Effects related to pair correlation of π electrons. J. Chem. Phys. 63, 3613–3623 (1975)
Kresin, V., Little, W. (eds.): Organic superconductivity. Plenum, NY (1990)
Davydov, A.S.: Solitons in molecular systems. Kluwer Academic, Dordrecht (1991)
Mourachkine, A.: Room-temperature superconductivity. Cambridge International Science Publishing (2004)
Lebed, A.G. (Ed.): The physics of organic superconductors and conductors. Springer Series in Materials Science 110, Springer: Berlin, Heidelberg (2008)
Mikheenko, P.: Graphene-assisted transport measurements of biological samples. IEEE Xplore Digital Library 7757272 (2016)
Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)
Ivanchenko, Y.M., Mikheenko, P.N., Khirnyi, V.F.: Kinetics of the destruction of superconductivity by the current in the thin films. Sov Phys JETP. 53, 86 (1981)
Tinkham, M.: Introduction to superconductivity. McGraw-Hill, Inc., New York (1996)
Hameroff, S.: Quantum computation in brain microtubules? The Penrose–Hameroff ‘Orch OR’ model of consciousness Philos. Trans. R. Soc. Lond., Ser A, Math. Phys. Sci. 356, 1869 (1998)
Hameroff, S., Penrose, R.: Consciousness in the universe. Phys Life Rev. 11, 39–78 (2014)
Fletcher, D.A., Mullins, R.D.: Cell mechanics and the cytoskeleton. Nature. 463, 485–492 (2010)
Mikheenko, P., Deng, X., Gildert, S., Colclough, M.S., Smith, R.A., Muirhead, C.M., Prewett, P.D., Teng, J.: Phase slips in submicrometer YBaCu3O7−δ bridges. Phys. Rev. B. 72(174506), (2005)
Dougherty, R., Kimel, J.D.: Temperature dependence of the superconductor energy gap. ArXiv. 1212, 0423 (2012)
Dougherty, R., Kimel, J. D.: Superconductivity revisited. CRC Press, New York (2012)
Zheng, X.H., Walmsley, D.G.: Temperature-dependent gap edge in strong-coupling superconductors determined using the Eliashberg-Nambu formalism. Phys. Rev. B. 77, 104510 (2008)
Hamo, A., Benyamini, A., Shapir, I., Khivrich, I., Waissman, J., Kaasbjerg, K., Oreg, Y., von Oppen, F., Ilani, S.: Electron attraction mediated by Coulomb repulsion. Nature. 535, 395–400 (2016)
Flores-Livas, J.A., Sanna, A., Graužinytė, M., Davydov, A., Goedecker, S., Marques, M.A.L.: Emergence of superconductivity in doped H2O ice at high pressure. Sci. Rep. 7(6825), 6825 (2017)
Sahu, S., Ghosh, S., Hirata, K., Fujita, D., Bandyopadhyay, A.: Multi-level memory-switching properties of a single brain microtubule. Appl. Phys. Lett. 102, 123701 (2013)
Sahu, S., Ghosh, S., Ghosh, B., Aswani, K., Hirata, K., Fujita, D., Bandyopadhyay, A.: Atomic water channel controlling remarkable properties of a single brain microtubule: Correlating single protein to its supramolecular assembly. Biosens. Bioelectron. 47, 141–148 (2013)
Acknowledgments
Author thanks Prof. M. Fyhn, D. O. Ø. Mjærum, and Dr. I. Mikheenko for providing samples for measurements. Dr. Y. Mikheenko is acknowledged for critically reading the paper, D. O. Ø. Mjærum for useful discussions and help with experiments and Dr. M. Jankov for help with building experimental set-up.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mikheenko, P. Possible Superconductivity in the Brain. J Supercond Nov Magn 32, 1121–1134 (2019). https://doi.org/10.1007/s10948-018-4965-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10948-018-4965-4