Possible Superconductivity in the Brain

Abstract

The unprecedented power of the brain suggests that it may process information quantum-mechanically. Since quantum processing is already achieved in superconducting quantum computers, it may imply that superconductivity is the basis of quantum computation in the brain too. Superconductivity could also be responsible for long-term memory. Following these ideas, the paper reviews the progress in the search for superconductors with high critical temperature and tries to answer the question about the superconductivity in brain. It focuses on recent electrical measurements of brain slices, in which graphene was used as a room-temperature quantum mediator, and argues that these measurements could be interpreted as providing evidence of superconductivity in the neural network of mammalian brains. The estimated critical temperature of superconducting network in the brain is rather high, 2022 ± 157 K. A similar critical temperature was predicted in the Little’s model for one-dimensional organic chains linked to certain molecular complexes. A reasonable suggestion is that superconductivity develops in microtubules inside the neurons of the brain.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Halperin, E.H., Wolf, A.A.: Speculations of superconductivity in biological and organic systems. In: Advances in Cryogenic Engineering, vol. 17, Timmerhaus, K.D. (ed) Springer Science + Business Media LLC (1972)

  2. 2.

    Castelvecchi, D.: IBM's quantum cloud computer goes commercial. Nature. 543, 159 (2017)

    ADS  Article  Google Scholar 

  3. 3.

    Shim, Y.-P., Tahan, C.: Semiconductor-inspired design principles for superconducting quantum computing. Nat. Commun. 7, 11059 (2016)

    ADS  Article  Google Scholar 

  4. 4.

    Albarrán-Arriagada, F., Barrios, G.A., Sanz, M., Romero, G., Lamata, L., Retamal, J.C., Solano, E.: One-way quantum computing in superconducting circuits. Phys. Rev. A. 97, 032320 (2018)

    ADS  Article  Google Scholar 

  5. 5.

    Hameroff, S.: The brain is both neurocomputer and quantum computer. Cogn. Sci. 31, 1035–1045 (2007)

    Article  Google Scholar 

  6. 6.

    Weingarten, C.P., Doraiswamy, P.M., Fisher, M.P.A.: A new spin on neural processing: quantum cognition. Front. Hum. Neurosci. 10, 541 (2016)

  7. 7.

    Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V., Shylin, S.I.: Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature. 525, 73–76 (2015)

    ADS  Article  Google Scholar 

  8. 8.

    Gor’kov, L.P., Kresin, V.Z.: Colloquium: high pressure and road to room temperature superconductivity. Rev. Mod. Phys. 90, 011001 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    Kresin, V.Z.: High-Tc hydrides: interplay of optical and acoustic modes and comments regarding the upper limit of Tc. J. of Supercond. And novel. Magn. 31, 3391 (2018)

  10. 10.

    Delft, D. van, Kes, P.: The discovery of superconductivity. Physics Today, September, 38 (2010)

  11. 11.

    Eisenstein, J.: Superconducting elements. Rev. Mod. Phys. 26, 277–291 (1954)

    ADS  Article  Google Scholar 

  12. 12.

    Daunt, J.G., Horseman, A., Mendelssohn, K.: LXX.Thermodynamical properties of some supraconductors. Phil. Mag. 27, 754–764 (1939)

    Article  Google Scholar 

  13. 13.

    Testardi, L.R., Wernick, J.H., Royer, W.A.: Superconductivity with onset above 23° K in Nb*Ge sputtered films. Solid State Comm. 15, 1–4 (1974)

  14. 14.

    Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Superconductivity at 39 K in magnesium diboride. Nature. 410, 63–64 (2001)

    ADS  Article  Google Scholar 

  15. 15.

    Mikheenko, P.: Superconductivity for hydrogen economy. J.Phys. Conf Ser. 286, 012014 (2011)

  16. 16.

    Thapa, D.K., Pandey, A.: Evidence for superconductivity at ambient temperature and pressure in nanostructures. ArXiv. 1807, 08572 (2018)

  17. 17.

    Awana, V.P.S.: Short note on superconductivity at ambient temperature and pressure in silver-embedded gold nano-particles: a goldsmith job ahead. J Supercond Novel Magn. 31, 3387 (2018)

  18. 18.

    Kresin, V.Z., Morawitz, V.H., Wolf, S.: Superconducting state; mechanisms and properties. Oxford press, Oxford (2014)

  19. 19.

    Kresin, V.Z.: Paths to room-temperature superconductivity. J Supercond Novel Magn. 31, 611 (2018)

  20. 20.

    Mermin, N.D., Wagner, H.: Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (Nov. 1966)

    ADS  Article  Google Scholar 

  21. 21.

    Hohenberg, P.C.: Existence of long-range order in one and two dimensions. Phys. Rev. 158, 383–386 (1967)

    ADS  Article  Google Scholar 

  22. 22.

    Kosterlitz, J.M., Thouless, D.J.: Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C. 6, 1181–1203 (1973)

    ADS  Article  Google Scholar 

  23. 23.

    Gao, L., Xue, Y.Y., Chen, F., Xiong, Q., Meng, R.L., Ramirez, D., Chu, C.W., Eggert, J.H., Mao, H.K.: Superconductivity up to 164 K in HgBa2 Cam−1 Cum O2m+2+δ(m=1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B. 50, 4260–4263 (1994)

  24. 24.

    Little, W.A.: Possibility of synthesizing an organic superconductor. Phys. Rev. 134, A1416–A1424 (1964)

    ADS  Article  Google Scholar 

  25. 25.

    Kresin, V., Litovchenko, C., Panasenko, A.: Effects related to pair correlation of π electrons. J. Chem. Phys. 63, 3613–3623 (1975)

    ADS  Article  Google Scholar 

  26. 26.

    Kresin, V., Little, W. (eds.): Organic superconductivity. Plenum, NY (1990)

  27. 27.

    Davydov, A.S.: Solitons in molecular systems. Kluwer Academic, Dordrecht (1991)

  28. 28.

    Mourachkine, A.: Room-temperature superconductivity. Cambridge International Science Publishing (2004)

  29. 29.

    Lebed, A.G. (Ed.): The physics of organic superconductors and conductors. Springer Series in Materials Science 110, Springer: Berlin, Heidelberg (2008)

  30. 30.

    Mikheenko, P.: Graphene-assisted transport measurements of biological samples. IEEE Xplore Digital Library 7757272 (2016)

  31. 31.

    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    ADS  Article  Google Scholar 

  32. 32.

    Ivanchenko, Y.M., Mikheenko, P.N., Khirnyi, V.F.: Kinetics of the destruction of superconductivity by the current in the thin films. Sov Phys JETP. 53, 86 (1981)

  33. 33.

    Tinkham, M.: Introduction to superconductivity. McGraw-Hill, Inc., New York (1996)

  34. 34.

    Hameroff, S.: Quantum computation in brain microtubules? The Penrose–Hameroff ‘Orch OR’ model of consciousness Philos. Trans. R. Soc. Lond., Ser A, Math. Phys. Sci. 356, 1869 (1998)

  35. 35.

    Hameroff, S., Penrose, R.: Consciousness in the universe. Phys Life Rev. 11, 39–78 (2014)

    ADS  Article  Google Scholar 

  36. 36.

    Fletcher, D.A., Mullins, R.D.: Cell mechanics and the cytoskeleton. Nature. 463, 485–492 (2010)

    ADS  Article  Google Scholar 

  37. 37.

    Mikheenko, P., Deng, X., Gildert, S., Colclough, M.S., Smith, R.A., Muirhead, C.M., Prewett, P.D., Teng, J.: Phase slips in submicrometer YBaCu3O7−δ bridges. Phys. Rev. B. 72(174506), (2005)

  38. 38.

    Dougherty, R., Kimel, J.D.: Temperature dependence of the superconductor energy gap. ArXiv. 1212, 0423 (2012)

  39. 39.

    Dougherty, R., Kimel, J. D.: Superconductivity revisited. CRC Press, New York (2012)

  40. 40.

    Zheng, X.H., Walmsley, D.G.: Temperature-dependent gap edge in strong-coupling superconductors determined using the Eliashberg-Nambu formalism. Phys. Rev. B. 77, 104510 (2008)

    ADS  Article  Google Scholar 

  41. 41.

    Hamo, A., Benyamini, A., Shapir, I., Khivrich, I., Waissman, J., Kaasbjerg, K., Oreg, Y., von Oppen, F., Ilani, S.: Electron attraction mediated by Coulomb repulsion. Nature. 535, 395–400 (2016)

    ADS  Article  Google Scholar 

  42. 42.

    Flores-Livas, J.A., Sanna, A., Graužinytė, M., Davydov, A., Goedecker, S., Marques, M.A.L.: Emergence of superconductivity in doped H2O ice at high pressure. Sci. Rep. 7(6825), 6825 (2017)

  43. 43.

    Sahu, S., Ghosh, S., Hirata, K., Fujita, D., Bandyopadhyay, A.: Multi-level memory-switching properties of a single brain microtubule. Appl. Phys. Lett. 102, 123701 (2013)

    ADS  Article  Google Scholar 

  44. 44.

    Sahu, S., Ghosh, S., Ghosh, B., Aswani, K., Hirata, K., Fujita, D., Bandyopadhyay, A.: Atomic water channel controlling remarkable properties of a single brain microtubule: Correlating single protein to its supramolecular assembly. Biosens. Bioelectron. 47, 141–148 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

Author thanks Prof. M. Fyhn, D. O. Ø. Mjærum, and Dr. I. Mikheenko for providing samples for measurements. Dr. Y. Mikheenko is acknowledged for critically reading the paper, D. O. Ø. Mjærum for useful discussions and help with experiments and Dr. M. Jankov for help with building experimental set-up.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Mikheenko.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mikheenko, P. Possible Superconductivity in the Brain. J Supercond Nov Magn 32, 1121–1134 (2019). https://doi.org/10.1007/s10948-018-4965-4

Download citation

Keywords

  • Superconductivity
  • Brain
  • Quantum Processing of Information
  • Microtubules