Skip to main content
Log in

Effect of Substrate Temperature on Structural, Morphological, Magnetic, and Electrical Properties of Fe2CoSi Heusler Alloy Thin Films for Spin-Based Device Applications

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Fe2CoSi based Heusler alloy thin films are deposited on single crystal Si (111) substrate at different substrate temperatures varying from room temperature to 600 °C using ultrahigh vacuum DC magnetron sputtering. Structural analysis of the prepared thin films is carried out using GI-XRD measurement and it conform ordered L21 crystal structure of the films deposited at 450 °C and above. The atomic force microscopic (AFM) images of Fe2CoSi thin films exhibiting 3D-like growth on Si (111) substrate at varying temperatures. The magnetic property of the thin films is studied using vibrating sample magnetometer (VSM). At 450 °C of substrate temperature, the prepared thin film exhibits high saturation magnetization (Ms = 948 emu/cc) and low coercivity (Hc = 8 Oe). The self-energy magnetization of the film and its own field is very high, when the temperature of the substrate was maintained at 450 °C and switching field ratio for this film was obtained as ~ 0.9 due to its high crystallinity and atomic ordering. The electrical property of Fe2CoSi thin film is investigated using four-probe technique and a positive magnetoresistive behavior was observed for thin film deposited at a substrate temperature of 450 °C which indicates the possible half-metallic nature at room temperature. The enhanced magnetic and electrical properties obtained for the thin film prepared at 450 °C substrate temperature is highly suitable for spin ­based device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Winterlik, J., Fecher, G.H., Balke, B., Graf, T., Alijani, V., Ksenofontov, V., Jenkins, C.A., Meshcheriakova, O., Felser, C.: Electronic, magnetic, and structural properties of the ferrimagnet Mn2CoSn. Phys. Rev. B. 83(174448), (2011)

  2. Meinert, M., Schmalhorst, J.-M., Reiss, G., Arenholz, E.: Ferrimagnetism and disorder of epitaxial Mn2−xCoxVAl Heusler compound thin films. J. Phys. D. Appl. Phys. 44, 215003 (2011)

    Article  ADS  Google Scholar 

  3. de Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J.: New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024–2027 (1983)

    Article  ADS  Google Scholar 

  4. Julliere, M.: Tunneling between ferromagnetic films. Phys. Lett. 54A, 225–226 (1975)

    Article  ADS  Google Scholar 

  5. Franco, V., Blazquez, J.S., Ingale, B., Conde, A.: The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Ann. Rev. Mat. Res. 42, 305–342 (2012)

    Article  ADS  Google Scholar 

  6. Entel, P., Buchelnikov, V.D., Khovailo, V.V., Zayak, A.T., Adeagbo, W.A., Gruner, M.E., Herper, H.C., Wassermann, E.F.: Modelling the phase diagram of magnetic shape memory alloys. J. Phys. D. Appl. Phys. 39, 865–870 (2006)

    Article  ADS  Google Scholar 

  7. Yu, S.Y., Liu, Z.H., Liu, G.D., Chen, J.L., Cao, Z.X., Wu, G.H., Zhang, B., Zhang, X.X.: Large magnetoresistance in single-crystalline Ni50Mn50−xInx alloys (x=14–16) upon martensitic transformation. Appl. Phys. Lett. 89, 162503–162505 (2006)

    Article  ADS  Google Scholar 

  8. Muthu, S.E., Rama Rao, N.V., Sridhara Rao, D.V., Manivel Raja, M., Devarajan, U., Arumugam, S.: Effect of Ni/Mn concentration on exchange bias properties in bulk Ni50-xMn37+xSn13 Heusler alloys. J. Appl. Phys. 110, 023904–023908 (2011)

    Article  ADS  Google Scholar 

  9. Krenke, T., Duman, E., Acet, M., Wassermann, E.F., Moya, X., Manosa, L., Planes, A., Suard, E., Ouladdiaf, B.: Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In. Phys. Rev. B. 75, 104414–104419 (2007)

    Article  ADS  Google Scholar 

  10. Zhang, B., Zhang, X.X., Yu, S.Y., Chen, J.L., Cao, Z.X., Wu, G.H.: Giant magnetothermal conductivity in the Ni–Mn–In ferromagnetic shape memory alloys. Appl. Phys. Lett. 91, 012510–012512 (2007)

    Article  ADS  Google Scholar 

  11. Parkin, S.S., Jiang, X., Kaiser, C., Panchula, A., Roche, K., Smant, M.: Magnetically engineered spintronic sensors and memory. Proc. IEEE. 91, 661–680 (2003)

    Article  Google Scholar 

  12. Rai, D.P., Khating, D.T., Patra, P.K., Hashemifar, J., Jamal, M., Lalmuanpuia, M.P., Sandeep, R., Thapa, R.K.G.: Study of Co2MnAl Heusler alloy as half-metallic ferromagnet. Indian J. Phys. 84(5), 593–559 (2010)

    Google Scholar 

  13. Rai, D.P., Maibam, J., Sharma, B.I., Shankar, A., Thapa, R.K., Ke, S.H.: Prediction of half-metallic ferromagnetism (HMF) in hypothetical Heusler compound Co2VSb using modified Becke Johnson (mBJ) potential. J. Alloys Compd. 589, 553–557 (2014)

    Article  Google Scholar 

  14. Rai, D.P., Shankar, A., Sandeep, M.P., Khenata, R., Thapa, R.K.G.: Correction: Study of the enhanced electronic and thermoelectric (TE) properties of ZrxHf1−xyTayNiSn: a first principles study. RSC Adv. 6, 13358–13358 (2016)

    Article  Google Scholar 

  15. Nakatani, T.M., Rajanikanth, A., Gercsi, Z., Takahashi, Y.K., Inomata, K., Hono, K.: Structure, magnetic property, and spin polarization of Co2FeAlxSi1− x Heusler alloys. J. Appl. Phys. 102, 033916 (2007)

    Article  ADS  Google Scholar 

  16. Balke, B., Wurmehl, S., Fecher, G.H., Felser, C., Lin, H.-J., Alves, M.C.M., Bernadi, F., Morais, J.: Structural characterization of the Co2FeZ (Z=Al, Si, Ga and Ge) Heusler compounds by X-ray diffraction and extended x-ray absorption fine structure spectroscopy. Appl. Phys. Lett. 90, 172501 (2007)

    Article  ADS  Google Scholar 

  17. Luo, H., Zhu, Z., Ma, L., Xu, S., Zhu, X., Jiang, C., Xu, H., Wu, G.: Effect of site preference of 3d atoms on the electronic structure and half-metallicity of Heusler alloy Mn2YAl. J. Phys. D. Appl. Phys. 41, 055010 (2008)

    Article  ADS  Google Scholar 

  18. Graf, T., Felser, C., Parkin, S.S.P.: Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 39, 1–50 (2011)

    Article  Google Scholar 

  19. Luo, H., Zhu, Z., Ma, L., Xu, S., Liu, H., Qu, J., Li, Y., Wu, G.: Electronic structure and magnetic properties of Fe2YSi (Y = Cr, Mn, Fe, Co, Ni) Heusler alloys: a theoretical and experimental study. J. Phys. D. Appl. Phys. 40, 7121–7127 (2007)

    Article  ADS  Google Scholar 

  20. Galanakis, I.: Appearance of half-metallicity in the quaternary Heusler alloys. J. Phys.: Conds. Matter. 16, 3089 (2004)

    ADS  Google Scholar 

  21. Lue, C.S., Kuo, Y.K.: Thermoelectric properties of the semimetallic Heusler compounds Fe2−xV1+xM (M=Al, Ga). Phys. Rev. B. 66, 085121 (2002)

    Article  ADS  Google Scholar 

  22. Kawaharada, Y., Uneda, H., Kurosaki, K., Yamanaka, S.: Thermoelectric properties of Fe–V–Si Heusler type compounds. J. Alloy. Compd. 359, 216–220 (2003)

    Article  Google Scholar 

  23. Ozdogan, K., Aktas, B., Galanakis, I., Sasioglu, E.: Influence of mixing the low-valent transition metal atoms (Y, Y∗=Cr, Mn, Fe) (Y, Y*=Cr, Mn, Fe) on the properties of the quaternary Co2 [Y1−xY x] Z (Z=Al, Ga, Si, Ge, or Sn) Heusler compounds. J. Appl. Phys. 101, 073910 (2007)

    Article  ADS  Google Scholar 

  24. Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B. 174429, 66 (2002)

    Google Scholar 

  25. Graf, T., Fecher, C., Parkin, S.S.P.: Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 39, 1–50 (2011)

    Article  Google Scholar 

  26. Luo, H.Z., Zhu, Z.Y., Li, M., Xu, S.F., Liu, H.Y., Qu, J.P., Li, Y.X., Wu, G.H.: Electronic structure and magnetic properties of Fe2YSi (Y=Cr, Mn, Fe, Co, Ni) Heusler alloy: a theoretical and experimental study. J. Phys. D, Appl. Phys. 40, 7121 (2007)

    Article  ADS  Google Scholar 

  27. Du, Y., Xu, G.Z., Zhang, X.M., Liu, Z.Y., Yu, S.Y., Liu, E.K., Wang, W.H., Wu, G.H.: Crossover of magnetoresistance in the zero-gap half-metallic Heusler alloy Fe2CoSi. Europhys. Lett. 103, 37011 (2013)

    Article  ADS  Google Scholar 

  28. Asvini, V., Saravanan, G., Kalaiezhily, R.K., Manivel Raja, M., Ravichandran, K.: Enhanced magnetic studies of Fe50Co50 thin film on Si (111) substrate by modified sputtering technique. Mater. Res. Express. 4, 116407 (2017)

    Article  ADS  Google Scholar 

  29. Srinivas, K., Prasanna Kumari, T., Manivel Raja, M., Kamat, S.V.: Effect of Fe substitution for Co on structure, electrical resistivity, and magnetic properties of Heusler type Co2-xFe1+xSi alloys. J. Appl. Phys. 114, 033911 (2013)

    Article  ADS  Google Scholar 

  30. Mote, V.D., Purushotham, Y., Dole, B.N.: Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6, 6 (2012)

    Article  ADS  Google Scholar 

  31. Bindu, P., Thomas, S.: Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8, 123–134 (2014)

    Article  ADS  Google Scholar 

  32. Arrott, A.: Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev. 108(6), 1394–1396 (1957)

    Article  ADS  Google Scholar 

  33. Ronald. F Soohoo, “Magnetic thin films”, Harper & Row Publisher, (1965)

  34. David Sellmyer, Ralph Skomski, “Advanced Magnetic Nanostructures”, Springer Publisher, ISBN: 978-81-8489-162-1, (2006)

Download references

Acknowledgements

The authors are thankful to DMRL, Hyderabad, for extending research facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ravichandran.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asvini, V., Saravanan, G., Kalaiezhily, R.K. et al. Effect of Substrate Temperature on Structural, Morphological, Magnetic, and Electrical Properties of Fe2CoSi Heusler Alloy Thin Films for Spin-Based Device Applications. J Supercond Nov Magn 32, 2247–2257 (2019). https://doi.org/10.1007/s10948-018-4955-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4955-6

Keywords

Navigation