Skip to main content
Log in

Angular Dependence of the Critical Current Density in Two-Band Ginzburg-Landau Theory

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this study, we have calculated the angular dependence of critical current using the two-band Ginzburg-Landau (GL) theory, generalized for the anisotropic mass case in different bands. It was illustrated that the two-band GL theory gives analytical expression for the angular dependence of critical current density. In calculations, we employ results of microscopical simulations for Fermi surface of LaFeAsO1 − xFx compound. It is shown that such a theory is in agreement with the experimental data for this compound. The obtained result was discussed in comparison with other studies which take into account pinning effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Kamihara, Y., et al.: J. Am. Chem. Soc. 128, 10012 (2008)

    Article  Google Scholar 

  2. Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: Iron-Based Layered Superconductor La[O1-xFx]FeAs (x= 0.05−0.12) withTc= 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008)

    Article  Google Scholar 

  3. Ren, Z.A., Lu, W., Yang, J.: Chin. Phys. Lett. 25, 2215 (2008)

    Article  ADS  Google Scholar 

  4. Rotter, M., Tegel, M., Johrendt, D.: Superconductivity at 38 K in the Iron Arsenide(Ba1−xKx)Fe2As2. Phys. Rev. Lett. 101, 107006 (2008)

    Article  ADS  Google Scholar 

  5. Prozorov, R., Ni, N., Tanatar, M., Kogan, V.G., et al.: Phys. Rev. B. 78, 224506 (2008)

    Article  ADS  Google Scholar 

  6. Wang, X., Liu, Q.Q., Lv, Y.X., et al.: The superconductivity at 18 K in LiFeAs system. Solid State Commun. 148, 538–540 (2008)

    Article  ADS  Google Scholar 

  7. Chu, C.V., Lorentz, B.: Physica C. 469, 285 (2009)

    Google Scholar 

  8. Hu, J., Luo, Y., Yeh, K.W., et al.: Proc. Natl. Acad. Sci. U. S. A. 105, 14262 (2008)

    Article  ADS  Google Scholar 

  9. Ivanovskii, A.L.: New high-temperature superconductors based on rare-earth and transition metal oxyarsenides and related phases: synthesis, properties and simulations. Physics-Uspekhi. 51, 1229–1260 (2008)

    Article  ADS  Google Scholar 

  10. Sadovskii, M.V.: High-temperature superconductivity in iron-based layered iron compounds. Physics-Uspekhi. 51, 1201–1227 (2008)

    Article  ADS  Google Scholar 

  11. Ren, Z.A., Zhao, Z.X.: Adv. Mater. 21, 4584 (2009)

    Article  Google Scholar 

  12. Hanaguri, T., Nitaka, S., Kuroki, K., Takagi, H.: Unconventional s-Wave Superconductivity in Fe(Se,Te). Science. 328, 474–476 (2010)

    Article  ADS  Google Scholar 

  13. Askerzade, I.: Unconventional Superconductors: Anisotropy and Multiband Effects. Springer -Verlag, Berlin, 177p (2012)

    Book  Google Scholar 

  14. Shein, I.R., Ivanovskii, A.L.: Electronic properties of novel 6 K superconductor LiFeP in comparison with LiFeAs from first principles calculations. Solid State Commun. 150, 152–156 (2010)

    Article  ADS  Google Scholar 

  15. Dolgov, O.V., Mazin, I.I., Parker, D.: Phys Rev. B. 79, 060502 (2008)

    Article  Google Scholar 

  16. Ummarino, G.A.: Multibands±Eliashberg theory and temperature-dependent spin-resonance energy in iron pnictide superconductors. Phys. Rev. B. 83, 092508 (2011)

    Article  ADS  Google Scholar 

  17. Benfanto, L., Capelluti, E., Castelliani, C.: Spectroscopic and thermodynamic properties in a four-band model for pnictides. Phys. Rev. B. 80, 214522 (2009)

    Article  ADS  Google Scholar 

  18. Milosevic, M.V., Perali, A.: Supercond. Sci. Technol. 060201, 28 (2015)

    Google Scholar 

  19. Kidzun, M., Haindl, S., Thersleff, T., et al.: Phys. Rev. Lett. 106, 137001 (2011)

    Article  ADS  Google Scholar 

  20. Gonneli, R.S., Daghero, D., Tortello, M., et al.: Physica C. 469, 512 (2009)

    Article  ADS  Google Scholar 

  21. Vander Berk, C.J.: Supercond. Sci. Technol. 25, 084010 (2012)

    Article  ADS  Google Scholar 

  22. Askerzade, I.N., Gencer, A., Guclu, N.: Supercond. Sci. Technol. 15, (2002) L13

  23. Askerzade, I.N., Gencer, A., Guclu, N., Kilic, A.: Supercond. Sci. Technol. 15, (2002) L17

  24. Sahin, H., Askerzade, I.N.: Eur Phys J Appl. Phys. 36(3), 267 (2006)

    Article  ADS  Google Scholar 

  25. Askerzade, I.N.: J. Supercond. Nov. Magn. 24(1–2), 275 (2011)

    Article  Google Scholar 

  26. Askerzade, I.N.: Study of layered superconductors in the framework of an electron–phonon coupling mechanism. Physics-Uspekhi. 52(10), 977–988 (2009)

    Article  ADS  Google Scholar 

  27. Askerzade, I.N.: J. Supercond. Nov. Magn. 30(6), 1655 (2017)

    Article  Google Scholar 

  28. Askerzade, I.N., Tanatar, B.: Angular dependence of upper critical field in two-band Ginzburg–Landau theory. Physica C. 459, 56 (2007)

    Article  ADS  Google Scholar 

  29. Askerzade, I.N., Askerbeyli (Tagiyeva), R.T.: Supercond. Sci. Technol. 25, 095007 (2012)

    Article  ADS  Google Scholar 

  30. Singh, D.J., Du, M.H.: Phys. Rev. Lett. 1000, 237003 (2008)

    Article  ADS  Google Scholar 

  31. Abrikosov, A.A.: Fundamentals of the Theory of Metals, Amsterdam. 636 (1988)

  32. Tinkham, M.: Introduction to Superconductivity. McGraw Hill, New York (1996)

    Google Scholar 

  33. Geilikman, B.T., Zaitsev, R.O., Kresin, V.Z.: Sov. Phys. Solid State. 9, 642 (1967)

    Google Scholar 

  34. Gurevich, A.: Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors. Phys. Rev. B. 67, 184515 (2003)

    Article  ADS  Google Scholar 

  35. Gurevich, A.: Limits of the upper critical field in dirty two-gap superconductors. Physica C. 456, 160–169 (2007)

    Article  ADS  Google Scholar 

  36. Silaev, M., Babaev, E.: Microscopic theory of type-1.5 superconductivity in multiband systems. Phys. Rev. B. 84, 094515 (2011)

    Article  ADS  Google Scholar 

  37. Silaev, M., Babaev, E.: Microscopic derivation of two-component Ginzburg-Landau model and conditions of its applicability in two-band systems. Phys. Rev. B. 85, 134514 (2012)

    Article  ADS  Google Scholar 

  38. Garaud, J., Corticelli, A., Silaev, M., Babaev, E.: Properties of dirty two-band superconductors with repulsive interband interaction: Normal modes, length scales, vortices, and magnetic response. Phys. Rev. B. 98, 014520 (2018)

    Article  ADS  Google Scholar 

  39. Shanenko, A.A., Milosevic, M.V., Peeters, F.M., Vagov, A.V.: Extended Ginzburg-Landau formalism for two-band superconductors. Phys. Rev. Lett. 106, 047005 (2011)

    Article  ADS  Google Scholar 

  40. Vagov, A.V., Milosevic, M.V., Shanenko, A.A., et al.: Superconductivity between standard types: multiband versus single-band materials. Phys. Rev. B. 93, 174503 (2016)

    Article  ADS  Google Scholar 

  41. Langmann, E.: Phys. Rev. B. 46, 9104 (1992)

    Article  ADS  Google Scholar 

  42. Gigorishin, K.V.: Effective Ginzburg–Landau free energy functional for multi-band isotropic superconductors. Phys. Lett. A. 380, 1781–1787 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  43. Blatter, G., Feigelman, M.V., Geshkenbein, B.B., et al.: Rev. Mod. Phys. 6, 1125 (1994)

    Article  ADS  Google Scholar 

  44. Harnish, J., Kazumasa, I., Fritz, K., et al.: Sci. Rep. 5, 17363 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Askerzade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askerzade, I.N., Güzel, M.S. Angular Dependence of the Critical Current Density in Two-Band Ginzburg-Landau Theory. J Supercond Nov Magn 32, 1921–1926 (2019). https://doi.org/10.1007/s10948-018-4933-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4933-z

Keywords

Navigation