Advertisement

Prediction of a Dynamically Stable New Half-Metallic Phase for the BaN and BaC Compounds

  • L. Beldi
  • H. Bendaoud
  • K. O. ObodoEmail author
  • B. Abbar
  • B. Bouhafs
Original Paper
  • 41 Downloads

Abstract

The structural, magnetic, elastic, mechanical, and thermodynamic properties of BaC and BaN compounds in different phases were studied using first-principle calculations based on spin-polarized density functional theory within the generalized gradient approximation (GGA-PBEsol) and the modified Becke–Johnson approach (mBJ-GGA-PBEsol) for the exchange-correlation energy and potential. The following phases—rock-salt (NaCl), CsCl, zinc blende (ZB), NiAs- and WZ-type hexagonal, tetragonal (P4/nmm), and orthorombic (Pnma) phases of BaC and BaN compounds—were considered. We obtained that Pnma phase has the lowest energy configuration as a function of the volume for both the BaN and BaC compounds. The ferromagnetic phase is energetically favored with respect to the non-magnetic phase in the BaN and BaC compounds, except for the CsCl phase in the BaC compound. Considering the phonon dynamics of BaN and BaC compounds in the Pnma, NaCl, ZB, and WZ phases, we observed that the BaN and BaC compounds in the Pnma, NaCl, and ZB phases are dynamically stable. The calculated elastic properties for the Pnma, NaCl, and ZB phases show that they are elastically stable. The Pnma phase for the BaN and BaC compounds, which is a new phase was found to be dynamically and elastically stable. The BaN and BaC compounds exhibit half-metallic behavior in the Pnma, NaCl, and ZB phases. The half-metallic and magnetic character found in the BaN and BaC compounds are attributed to the presence of spin-polarized 2p orbitals of the nitrogen and carbon atoms, respectively. We found that BaN and BaC compounds are half-metallic ferromagnets with magnetic moment of 1 μB and 2 μB per formula unit, respectively. Using the GGA-PBEsol (mBJ-GGA-PBEsol) approach, our calculated half-metallic gaps for BaN and BaC compounds are 0.22 eV (0.54 eV) and 0.32 eV (0.44 eV) in the Pnma phase, 0.23 eV (1.32 eV) and 0.35 eV (1.00 eV) in the NaCl phase, and 0.38 eV (1.54 eV) and 0.50 eV (1.57 eV) in the ZB phase, respectively.

Keywords

Density functional theory Phase stability Phonon dynamics BaN BaC Half-metallic 

Notes

Acknowledgments

B.B. acknowledges the Algerian Academy of Sciences and Technology (AAST) and the Abdus-Salam International Center for Theoretical Physics (ICTP, Trieste, Italy). K.O.O. thanks Moritz Braun and the University of South Africa for the financial support.

References

  1. 1.
    De Groot, R., Mueller, F., Van Engen, P., Buschow, K.: Phys. Rev. Lett. 50, 2024 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    van Leuken, H., de Groot, R.A.: Phys. Rev. Lett. 74, 1171–1173 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    Katsnelson, M.I., Irkhin, V.Y., Chioncel, L., Lichtenstein, A.I., de Groot, R.A.: Rev. Mod. Phys. 80, 315–378 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    H. Benaissa, S. Benatmane, S. Amari, K. Obodo, L. Beldi, H. Bendaoud, B. Bouhafs, Ferromagnetism in RaBi with zinc-blende and wurtzite structures: ab-initio prediction, in: SPIN, vol 8, World Scientific, 2018, p. 1850008Google Scholar
  5. 5.
    Coey, J., Venkatesan, M.: J. Appl. Phys. 91, 8345–8350 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    Russell, K., Appelbaum, I., Yi, W., Monsma, D., Capasso, F., Marcus, C., Narayanamurti, V., Hanson, M., Gossard, A.: Appl. Phys. Lett. 85, 4502–4504 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Sato, K., Bergqvist, L., Kudrnovský, J., Dederichs, P.H., Eriksson, O., Turek, I., Sanyal, B., Bouzerar, G., Katayama-Yoshida, H., Dinh, V.: Rev. Mod. Phys. 82, 1633 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Coey, J.M.D., Venkatesan, M.: J. Appl. Phys. 91, 8345–8350 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Djefal, A., Amari, S., Obodo, K., Beldi, L., Bendaoud, H., Evans, R., Bouhafs, B.: Half-metallic ferromagnetism in double perovskite Ca2CoMoO6 compound: DFT+ U calculations, in: Spin, vol 7, World Scientific, 2017, p. 1750009Google Scholar
  10. 10.
    Seddik, L., Amari, S., Obodo, K., Beldi, L., Faraoun, H., Bouhafs, B.: SPIN. 7, 1750010 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    Moradi, M., Mohammadi, A., Afshari, M., Soltani, Z.: J. Magn. Magn. Mater. 332, 81–84 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Ohno, H., Shen, A., Matsukura, F., Oiwa, A., Endo, A., Katsumoto, S., Iye, Y.: Appl. Phys. Lett. 69, 363–365 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    Favre-Nicolin, E.: Étude du transport dépendant du spin dans des nanostructures à base de manganite, in: Université Joseph-Fourier-Grenoble I, 2003Google Scholar
  14. 14.
    Benaissa, H., Bendaoud, H., Amari, S., Obodo, K.O., Beldi, L., Bouhafs, B.: J. Magn. Magn. Mater. 466, 28–37 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    Kusakabe, K., Geshi, M., Tsukamoto, H., Suzuki, N.: J. Phys. Condens. Matter. 16, S5639 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Zhang, C.-W., Yan, S.-S.: Solid State Commun. 149, 387–392 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Volnianska, O., Jakubas, P., Bogusławski, P.: J. Alloys Compd. 423, 191–193 (2006)CrossRefGoogle Scholar
  18. 18.
    Bourourou, Y., Beldi, L., Bentria, B., Gueddouh, A., Bouhafs, B.: J. Magn. Magn. Mater. 365, 23–30 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Hlynsson, V.F., Skúlason, E., Garden, A.L.: J. Alloys Compd. 603, 172–179 (2014)CrossRefGoogle Scholar
  20. 20.
    Eck, B., Dronskowski, R., Takahashi, M., Kikkawa, S.: J. Mater. Chem. 9, 1527–1537 (1999)CrossRefGoogle Scholar
  21. 21.
    Palanichamy, R.R., Priyanga, G.S., Cinthia, A.J., Murugan, A., Meenaatci, A.A., Iyakutti, K.: J. Magn. Magn. Mater. 346, 26–37 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Yogeswari, M., Kalpana, G.: Comput. Mater. Sci. 54, 219–226 (2012)CrossRefGoogle Scholar
  23. 23.
    Gao, G., Yao, K., Liu, Z., Zhang, J., Min, Y., Fan, S.: Phys. Lett. A. 372, 1512–1515 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Volnianska, O., Bogusławski, P.: Phys. Rev. B. 75, 224418 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Sharifzadeh, H.S., Sharifzadeh, S.S., Kanjouri, F., Esmailian, A.: J Theor Appl Phys. 7, 16 (2013)CrossRefGoogle Scholar
  26. 26.
    Sieberer, M., Redinger, J., Khmelevskyi, S., Mohn, P.: Phys. Rev. B. 73, 024404 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Dong, S., Zhao, H.: Appl. Phys. Lett. 98, 182501 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    Gao, G.Y., Yao, K.L.: Appl. Phys. Lett. 91, 082512 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Dong, S., Ding, H.-C., Zhou, B., Duan, C.-G., Wu, P., Zhao, H.: J. Magn. Magn. Mater. 378, 469–477 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Gao, G.Y., Yao, K.L., Şaşıoğlu, E., Sandratskii, L.M., Liu, Z.L., Jiang, J.L.: Phys. Rev. B. 75, 174442 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Dong, S., Zhao, H.: J. Magn. Magn. Mater. 324, 2588–2592 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Hohenberg, P., Kohn, W.: Phys. Rev. 136, B864–B871 (1964)ADSCrossRefGoogle Scholar
  33. 33.
    Kohn, W., Sham, L.J.: Phys. Rev. 140, A1133 (1965)ADSCrossRefGoogle Scholar
  34. 34.
    Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J., Laskowski, R., Tran, F., Marks, L.: WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties (Karlheinz Schwarz, Techn. Universität Wien, Austria), 2018Google Scholar
  35. 35.
    Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Phys. Rev. Lett. 100, 136406 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Tran, F., Blaha, P.: Phys. Rev. Lett. 102, 226401 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    Blöchl, P.E., Jepsen, O., Andersen, O.K.: Phys. Rev. B. 49, 16223 (1994)ADSCrossRefGoogle Scholar
  38. 38.
    Murnaghan, F.D.: Proc. Natl. Acad. Sci. 30, 244–247 (1944)ADSCrossRefGoogle Scholar
  39. 39.
    Feynman, R.P.: Phys. Rev. 56, 340 (1939)ADSCrossRefGoogle Scholar
  40. 40.
    Togo, A., Tanaka, I.: Scr. Mater. 108, 1–5 (2015)CrossRefGoogle Scholar
  41. 41.
    Monkhorst, H.J., Pack, J.D.: Phys. Rev. B. 13, 5188–5192 (1976)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Dridi, Z., Bouhafs, B., Ruterana, P., Aourag, H.: J. Phys. Condens. Matter. 14, 10237 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    Wu, Z., Chen, X.-J., Struzhkin, V.V., Cohen, R.E.: Phys. Rev. B. 71, 214103 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    Haas, P., Tran, F., Blaha, P.: Phys. Rev. B. 79, 085104 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    Obodo, K.O., Chetty, N.: J. Nucl. Mater. 440, 229–235 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    M.S. Suleiman, D.P. Joubert, physica status solidi (b) 252 (2015) 2840–2852ADSCrossRefGoogle Scholar
  47. 47.
    Obodo, K.O., Ouma, C.N.M., Obodo, J.T., Braun, M.: Phys. Chem. Chem. Phys. 19, 19050–19057 (2017)CrossRefGoogle Scholar
  48. 48.
    Kuchta, B., Firlej, L., Etters, R.: An influence of the pressure on metastability of the HCP phase of solid nitrogen, in: Frontiers of high pressure research II: application of high pressure to low-dimensional novel electronic materials, Springer, 2001, pp. 251–261Google Scholar
  49. 49.
    Obodo, K., Chetty, N.: Solid State Commun. 193, 41–44 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    Dzade, N.Y., Obodo, K.O., Adjokatse, S.K., Ashu, A.C., Amankwah, E., Atiso, C.D., Bello, A.A., Igumbor, E., Nzabarinda, S.B., Obodo, J.T.: J. Phys. Condens. Matter. 22, 375502 (2010)CrossRefGoogle Scholar
  51. 51.
    Gao, G., Yao, K., Li, N.: J. Phys. Condens. Matter. 23, 075501 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    Özdogan, K., Galanakis, I.: J. Adv. Phys. 1, 69–77 (2012)CrossRefGoogle Scholar
  53. 53.
    H. Siethoff, K. Ahlborn, physica status solidi (b) 190 (1995) 179–191ADSCrossRefGoogle Scholar
  54. 54.
    Reshak, A.H., Jamal, M.: J. Alloys Compd. 543, 147–151 (2012)CrossRefGoogle Scholar
  55. 55.
    R. Hill, Proceedings of the Physical Society. Section A 65 (1952) 349ADSCrossRefGoogle Scholar
  56. 56.
    M. Born, K. Huang, London: Oxford University Press (1956)Google Scholar
  57. 57.
    Mouhat, F., Coudert, F.-X.: Phys. Rev. B. 90, 224104 (2014)ADSCrossRefGoogle Scholar
  58. 58.
    Born, M., Huang, K.: Dynamical theory of crystal lattices. Clarendon Press (1954)Google Scholar
  59. 59.
    Haines, J., Leger, J., Bocquillon, G.: Annu. Rev. Mater. Res. 31, 1–23 (2001)ADSCrossRefGoogle Scholar
  60. 60.
    Pugh, S.: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 45, 823–843 (1954)CrossRefGoogle Scholar
  61. 61.
    Frantsevich, I., Voronov, F., Bokuta, S.: Elastic Constants and Elastic Moduli of Metals and Insulators Handbook. 60 (1983)Google Scholar
  62. 62.
    Bisi, O., Ossicini, S.: L. Pavesi. Surf. Sci. Rep. 38, 1–126 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • L. Beldi
    • 1
  • H. Bendaoud
    • 1
  • K. O. Obodo
    • 2
    Email author
  • B. Abbar
    • 1
  • B. Bouhafs
    • 1
  1. 1.Laboratoire de Modélisation et Simulation en Sciences des MatériauxUniversité Djillali Liabès de Sidi Bel-AbbèsSidi Bel-AbbèsAlgeria
  2. 2.Physics DepartmentUniversity of South AfricaPretoriaSouth Africa

Personalised recommendations