Magnetic Evaluation of the Nanoparticles Coated with Polyvinylpyrrolidone and Polyvinyl Chloride Nanoparticles Synthesized by Electro-deposition Method for Hyperthermia Application


Fe3O4 nanoparticles, coated with polyvinylpyrrolidone (PVP) + polyvinyl chloride (PVC), were synthesized using cathodic electrochemical deposition (CED) technique. Physical properties of the uncoated and PVP + PVC-coated nanoparticles were investigated using several methods including X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), Fourier transform infrared (FT-IR), and AC susceptometer. In both the samples, single-phase formation in cubic spinel structure is detected in the XRD analysis. In this study, the mean crystallite size of the prepared specimens is found to be varied from 10.2 to 8.7 nm after PVP + PVC coating. The results of the FT-TR test thoroughly verified the existence of PVP/PVC layer onto the surface of the electrodeposited NPs, and magnetic results also confirmed a superparamagnetic (SPM) behavior at room temperature for both of them. Coercivity and magnetization saturation reduction have also been observed, despite having lower grain size. Also, weak magnetic interactions of inter-particle and a superspin glass-like behavior at low temperatures are confirmed. In addition, increasing of PVP + PVC content on the surface coating of the magnetic nanoparticles has decreased the inter-particle interactions.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Modak, S., Karan, S., Roy, S., Chakrabarti, P.: Static and dynamic magnetic behavior of nanocrystalline and nanocomposites of (Mn 0.6 Zn 0.4 Fe 2 O 4)(1− z)(SiO 2) z (z= 0.0, 0.10, 0.15, 0.25). J. Appl. Phys. 108, 093912 (2010)

    ADS  Article  Google Scholar 

  2. 2.

    Tadic, M., Kusigerski, V., Markovic, D., Milosevic, I., Spasojevic, V.: High concentration of hematite nanoparticles in a silica matrix: structural and magnetic properties. J. Magn. Magn. Mater. 321, 12–16 (2009)

    ADS  Article  Google Scholar 

  3. 3.

    Saffari, F., Kameli, P., Rahimi, M., Ahmadvand, H., Salamati, H.: Effects of co-substitution on the structural and magnetic properties of NiCo x Fe 2− x O 4 ferrite nanoparticles. Ceram. Int. 41, 7352–7358 (2015)

    Article  Google Scholar 

  4. 4.

    Korkmaz, A., Güner, S., Slimani, Y., Gungunes, H., Amir, M., Manikandan, A., et al.: Microstructural, optical, and magnetic properties of vanadium-substituted nickel spinel Nanoferrites. J. Supercond. Nov. Magn. 1–9 (2018)

  5. 5.

    Amir, M., Gungunes, H., Slimani, Y., Tashkandi, N., El Sayed, H., Aldakheel, F., et al.: Mössbauer studies and magnetic properties of cubic CuFe 2 O 4 nanoparticles. J. Supercond. Nov. Magn. 1–8 (2018)

  6. 6.

    Karimzadeh, I., Aghazadeh, M., Doroudi, T.: Preparation and characterization of poly (vinylpyrrolidone)/polyvinyl chloride coated superparamagnetic iron oxide (Fe3O4) nanoparticles for biomedical applications. Anal. Bioanal. Electrochem. 8, 604–614 (2016)

    Google Scholar 

  7. 7.

    Calero, M., Gutiérrez, L., Salas, G., Luengo, Y., Lázaro, A., Acedo, P., Morales, M.P., Miranda, R., Villanueva, A.: Efficient and safe internalization of magnetic iron oxide nanoparticles: two fundamental requirements for biomedical applications. Nanomedicine. 10, 733–743 (2014)

    Article  Google Scholar 

  8. 8.

    Wabler, M., Zhu, W., Hedayati, M., Attaluri, A., Zhou, H., Mihalic, J., Geyh, A., DeWeese, T.L., Ivkov, R., Artemov, D.: Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content. Int. J. Hyperth. 30, 192–200 (2014)

    Article  Google Scholar 

  9. 9.

    Majewski, P., Thierry, B.: Functionalized magnetite nanoparticles—synthesis, properties, and bio-applications. Crit. Rev. Solid State Mater. Sci. 32, 203–215 (2007)

    ADS  Article  Google Scholar 

  10. 10.

    Wang, Y., Li, B., Xu, F., Jia, D., Feng, Y., Zhou, Y.: In vitro cell uptake of biocompatible magnetite/chitosan nanoparticles with high magnetization: a single-step synthesis approach for in-situ-modified magnetite by amino groups of chitosan. J. Biomater. Sci. Polym. Ed. 23, 843–860 (2012)

    Article  Google Scholar 

  11. 11.

    Bedanta, S., Kleemann, W.: Supermagnetism. J. Phys. D. Appl. Phys. 42, 013001 (2008)

    ADS  Article  Google Scholar 

  12. 12.

    Ling, D., Lee, N., Hyeon, T.: Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc. Chem. Res. 48, 1276–1285 (2015)

    Article  Google Scholar 

  13. 13.

    Mateo-Mateo, C., Vazquez-Vazquez, C., Bujan-Nunez, M., Lopez-Quintela, M., Serantes, D., Baldomir, D., et al.: Synthesis and characterization of CoFe 2 O 4–PVP nanocomposites. J. Non-Cryst. Solids. 354, 5236–5237 (2008)

    ADS  Article  Google Scholar 

  14. 14.

    Rahimi, M., Kameli, P., Ranjbar, M., Salamati, H.: The effect of polyvinyl alcohol (PVA) coating on structural, magnetic properties and spin dynamics of Ni 0.3 Zn 0.7 Fe 2 O 4 ferrite nanoparticles. J. Magn. Magn. Mater. 347, 139–145 (2013)

    ADS  Article  Google Scholar 

  15. 15.

    Dung, T., Danh, T., Hoa, L., Chien, D., Duc, N.: Structural and magnetic properties of starch-coated magnetite nanoparticles. J. Exp. Nanosci. 4, 259–267 (2009)

    Article  Google Scholar 

  16. 16.

    Hufschmid, R., Arami, H., Ferguson, R.M., Gonzales, M., Teeman, E., Brush, L.N., Browning, N.D., Krishnan, K.M.: Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale. 7, 11142–11154 (2015)

    ADS  Article  Google Scholar 

  17. 17.

    Fang, C., Zhang, M.: Multifunctional magnetic nanoparticles for medical imaging applications. J. Mater. Chem. 19, 6258–6266 (2009)

    Article  Google Scholar 

  18. 18.

    Lemine, O., Omri, K., Zhang, B., El Mir, L., Sajieddine, M., Alyamani, A., et al.: Sol–gel synthesis of 8nm magnetite (Fe 3 O 4) nanoparticles and their magnetic properties. Superlattice. Microst. 52, 793–799 (2012)

    ADS  Article  Google Scholar 

  19. 19.

    Liu, X.-D., Chen, H., Liu, S.-S., Ye, L.-Q., Li, Y.-P.: Hydrothermal synthesis of superparamagnetic Fe 3 O 4 nanoparticles with ionic liquids as stabilizer. Mater. Res. Bull. 62, 217–221 (2015)

    Article  Google Scholar 

  20. 20.

    Li, S., Zhang, T., Tang, R., Qiu, H., Wang, C., Zhou, Z.: Solvothermal synthesis and characterization of monodisperse superparamagnetic iron oxide nanoparticles. J. Magn. Magn. Mater. 379, 226–231 (2015)

    ADS  Article  Google Scholar 

  21. 21.

    Wang, Z., Zhu, J., Chen, Y., Geng, K., Qian, N., Cheng, L., Lu, Z., Pan, Y., Guo, L., Li, Y., Gu, H.: Folic acid modified superparamagnetic iron oxide nanocomposites for targeted hepatic carcinoma MR imaging. RSC Adv. 4, 7483–7490 (2014)

    Article  Google Scholar 

  22. 22.

    Mandel, K., Straßer, M., Granath, T., Dembski, S., Sextl, G.: Surfactant free superparamagnetic iron oxide nanoparticles for stable ferrofluids in physiological solutions. Chem. Commun. 51, 2863–2866 (2015)

    Article  Google Scholar 

  23. 23.

    Karimzadeh, I., Dizaji, H.R., Aghazadeh, M.: Development of a facile and effective electrochemical strategy for preparation of iron oxides (Fe 3 O 4 and γ-Fe 2 O 3) nanoparticles from aqueous and ethanol mediums and in situ PVC coating of Fe 3 O 4 superparamagnetic nanoparticles for biomedical applications. J. Magn. Magn. Mater. 416, 81–88 (2016)

    ADS  Article  Google Scholar 

  24. 24.

    Karimzadeh, I., Aghazadeh, M., Ganjali, M.R., Norouzi, P., Shirvani-Arani, S., Doroudi, T., Kolivand, P.H., Marashi, S.A., Gharailou, D.: A novel method for preparation of bare and poly (vinylpyrrolidone) coated superparamagnetic iron oxide nanoparticles for biomedical applications. Mater. Lett. 179, 5–8 (2016)

    Article  Google Scholar 

  25. 25.

    Aghazadeh, M., Yousefi, T., Ghaemi, M.: Low-temperature electrochemical synthesis and characterization of ultrafine Y (OH) 3 and Y2O3 nanoparticles. J. Rare Earths. 30, 236–240 (2012)

    Article  Google Scholar 

  26. 26.

    Aghazadeh, M., Asadi, M., Maragheh, M.G., Ganjali, M.R., Norouzi, P., Faridbod, F.: Facile preparation of MnO 2 nanorods and evaluation of their supercapacitive characteristics. Appl. Surf. Sci. 364, 726–731 (2016)

    ADS  Article  Google Scholar 

  27. 27.

    Aghazadeh, M., Barmi, A.-A.M., Hosseinifard, M.: Nanoparticulates Zr (OH) 4 and ZrO 2 prepared by low-temperature cathodic electrodeposition. Mater. Lett. 73, 28–31 (2012)

    Article  Google Scholar 

  28. 28.

    Aghazadeh, M., Barmi, A.-A.M., Gharailou, D., Peyrovi, M.H., Sabour, B., Khosroshahi, F.N.: Cobalt hydroxide ultra-fine nanoparticles with excellent energy storage ability. Appl. Surf. Sci. 283, 871–875 (2013)

    ADS  Article  Google Scholar 

  29. 29.

    Aghazadeh, M., Maragheh, M.G., Ganjali, M.R., Norouzi, P., Faridbod, F.: Electrochemical preparation of MnO 2 nanobelts through pulse base-electrogeneration and evaluation of their electrochemical performance. Appl. Surf. Sci. 364, 141–147 (2016)

    ADS  Article  Google Scholar 

  30. 30.

    Marques, R.F., Garcia, C., Lecante, P., Ribeiro, S.J., Noé, L., Silva, N.J., et al.: Electro-precipitation of Fe 3 O 4 nanoparticles in ethanol. J. Magn. Magn. Mater. 320, 2311–2315 (2008)

    ADS  Article  Google Scholar 

  31. 31.

    Ibrahim, M., Serrano, K.G., Noe, L., Garcia, C., Verelst, M.: Electro-precipitation of magnetite nanoparticles: an electrochemical study. Electrochim. Acta. 55, 155–158 (2009)

    Article  Google Scholar 

  32. 32.

    Park, H., Ayala, P., Deshusses, M.A., Mulchandani, A., Choi, H., Myung, N.V.: Electrodeposition of maghemite (γ-Fe 2 O 3) nanoparticles. Chem. Eng. J. 139, 208–212 (2008)

    Article  Google Scholar 

  33. 33.

    Karimzadeh, I., Aghazadeh, M., Doroudi, T.: Preparation and characterization of poly (vinylpyrrolidone)/polyvinyl chloride coated superparamagnetic iron oxide (Fe3O4) nanoparticles for biomedical applications. Anal. Bioanal. Electrochem. 8, 654–659 (2016)

    Google Scholar 

  34. 34.

    Terreno, E., Castelli, D.D., Viale, A., Aime, S.: Challenges for molecular magnetic resonance imaging. Chem. Rev. 110, 3019–3042 (2010)

    Article  Google Scholar 

  35. 35.

    Suh, W.H., Suslick, K.S., Stucky, G.D., Suh, Y.-H.: Nanotechnology, nanotoxicology, and neuroscience. Prog. Neurobiol. 87, 133–170 (2009)

    Article  Google Scholar 

  36. 36.

    Kellar, K.E., Fujii, D.K., Gunther, W.H., Briley-Sæbø, K., Bjørnerud, A., Spiller, M., et al.: NC100150 injection, a preparation of optimized iron oxide nanoparticles for positive-contrast MR angiography. J. Magn. Reson. Imaging. 11, 488–494 (2000)

    Article  Google Scholar 

  37. 37.

    Zhao, X., Milton Harris, J.: Novel degradable poly (ethylene glycol) hydrogels for controlled release of protein. J. Pharm. Sci. 87, 1450–1458 (1998)

    Article  Google Scholar 

  38. 38.

    Covaliu, C.I., Jitaru, I., Paraschiv, G., Vasile, E., Biriş, S.-Ş., Diamandescu, L., Ionita, V., Iovu, H.: Core–shell hybrid nanomaterials based on CoFe 2 O 4 particles coated with PVP or PEG biopolymers for applications in biomedicine. Powder Technol. 237, 415–426 (2013)

    Article  Google Scholar 

  39. 39.

    Topkaya, R., Kurtan, U., Baykal, A., Toprak, M.S.: Polyvinylpyrrolidone (PVP)/MnFe 2 O 4 nanocomposite: sol–gel autocombustion synthesis and its magnetic characterization. Ceram. Int. 39, 5651–5658 (2013)

    Article  Google Scholar 

  40. 40.

    Jeong, Y.-I., Nah, J.-W., Na, H.-K., Na, K., Kim, I.-S., Cho, C.-S., Kim, S.H.: Self-assembling nanospheres of hydrophobized pullulans in water. Drug Dev. Ind. Pharm. 25, 917–927 (1999)

    Article  Google Scholar 

  41. 41.

    Massia, S.P., Stark, J., Letbetter, D.S.: Surface-immobilized dextran limits cell adhesion and spreading. Biomaterials. 21, 2253–2261 (2000)

    Article  Google Scholar 

  42. 42.

    Raoufi, T., Ehsani, M., Khoshnoud, D.S.: Magnetocaloric properties of La0. 6Sr0. 4MnO3 prepared by solid state reaction method. J. Alloys Compd. 689, 865–873 (2016)

    Article  Google Scholar 

  43. 43.

    Aslibeiki, B., Varvaro, G., Peddis, D., Kameli, P.: Particle size, spin wave and surface effects on magnetic properties of MgFe2O4 nanoparticles. J. Magn. Magn. Mater. 422, 7–12 (2017)

    ADS  Article  Google Scholar 

  44. 44.

    Botez, C.E., Adair, A.H., Tackett, R.J.: Evidence of superspin-glass behavior in Zn0. 5Ni0. 5Fe2O4 nanoparticles. J. Phys. Condens. Matter. 27, 076005 (2015)

    ADS  Article  Google Scholar 

  45. 45.

    Iida, H., Takayanagi, K., Nakanishi, T., Osaka, T.: Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J. Colloid Interface Sci. 314, 274–280 (2007)

    ADS  Article  Google Scholar 

  46. 46.

    Aghazadeh, M., Karimzadeh, I.: One-pot electro-synthesis and characterization of chitosan capped superparamagnetic Iron oxide nanoparticles (SPIONs) from ethanol media. Curr. Nanosci. 14, 42–49 (2018)

    Google Scholar 

  47. 47.

    Karimzadeh, I., Dizaji, H.R., Aghazadeh, M.: Development of a facile and effective electrochemical strategy for preparation of iron oxides (Fe3O4 and γ-Fe2O3) nanoparticles from aqueous and ethanol mediums and in situ PVC coating of Fe3O4 superparamagnetic nanoparticles for biomedical applications. J. Magn. Magn. Mater. 416, 81–88 (2016)

    ADS  Article  Google Scholar 

  48. 48.

    Almessiere, M., Slimani, Y., El Sayed, H., Baykal, A.: Ce-Y co-substituted strontium nanohexaferrites: AC susceptibility and Mossbauer studies. Ceram. Int. 44, 12520–12527 (2018)

    Article  Google Scholar 

  49. 49.

    Almessiere, M., Slimani, Y., Güngüneş, H., El Sayed, H., Baykal, A.: AC susceptibility and hyperfine interactions of vanadium substituted barium nanohexaferrites. Ceram. Int. 44, 17749–17758 (2018)

    Article  Google Scholar 

  50. 50.

    Slimani, Y., Almessiere, M., Baykal, A.: AC susceptibility study of cu substituted BaFe12O19 nanohexaferrites. Ceram. Int. 44, 13097–13105 (2018)

    Article  Google Scholar 

  51. 51.

    Kura, H., Takahashi, M., Ogawa, T.: Extreme enhancement of blocking temperature by strong magnetic dipoles interaction of α-Fe nanoparticle-based high-density agglomerate. J. Phys. D. Appl. Phys. 44, 022002 (2010)

    ADS  Article  Google Scholar 

  52. 52.

    Jaberolansar, E., Kameli, P., Ahmadvand, H., Salamati, H.: Synthesis and characterization of PVP-coated Co0. 3Zn0. 7Fe2O4 ferrite nanoparticles. J. Magn. Magn. Mater. 404, 21–28 (2016)

    ADS  Article  Google Scholar 

  53. 53.

    Zeb, F., Sarwer, W., Nadeem, K., Kamran, M., Mumtaz, M., Krenn, H., Letofsky-Papst, I.: Surface spin-glass in cobalt ferrite nanoparticles dispersed in silica matrix. J. Magn. Magn. Mater. 407, 241–246 (2016)

    ADS  Article  Google Scholar 

  54. 54.

    Roy, B., Das, S.: Magnetic cluster glass behavior and grain boundary effect in Nd 0.7 Ba 0.3 MnO 3 nanoparticles. J. Appl. Phys. 104, 103915 (2008)

    ADS  Article  Google Scholar 

  55. 55.

    Suzuki, M., Fullem, S.I., Suzuki, I.S., Wang, L., Zhong, C.-J.: Observation of superspin-glass behavior in Fe 3 O 4 nanoparticles. Phys. Rev. B. 79, 024418 (2009)

    ADS  Article  Google Scholar 

  56. 56.

    Winkler, E., Zysler, R., Mansilla, M.V., Fiorani, D., Rinaldi, D., Vasilakaki, M., et al.: Surface spin-glass freezing in interacting core–shell NiO nanoparticles. Nanotechnology. 19, 185702 (2008)

    ADS  Article  Google Scholar 

  57. 57.

    Hergt, R., Dutz, S., Müller, R., Zeisberger, M.: Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys. Condens. Matter. 18, S2919–S2934 (2006)

    ADS  Article  Google Scholar 

  58. 58.

    Amiri, S., Shokrollahi, H.: The role of cobalt ferrite magnetic nanoparticles in medical science. Mater. Sci. Eng. C. 33, 1–8 (2013)

    Article  Google Scholar 

  59. 59.

    Tartaj, P., Veintemillas-Verdaguer, S., Serna, C.J.: The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D. Appl. Phys. 36, R182–R197 (2003)

    Article  Google Scholar 

  60. 60.

    Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 36, R167–R181 (2003)

    ADS  Article  Google Scholar 

Download references


This study was financially supported by Semnan University, Grant No. 266.96.32782.

Author information



Corresponding author

Correspondence to M. H. Ehsani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ehsani, M.H., Esmaeili, S., Aghazadeh, M. et al. Magnetic Evaluation of the Nanoparticles Coated with Polyvinylpyrrolidone and Polyvinyl Chloride Nanoparticles Synthesized by Electro-deposition Method for Hyperthermia Application. J Supercond Nov Magn 32, 2021–2030 (2019).

Download citation


  • Fe3O4 nanoparticles
  • Surface coating
  • Superparamagnetic behavior
  • Hyperthermia application