Skip to main content
Log in

Topological Structures in Unconventional Scenario for 2D Cuprates

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Numerous experimental data point to cuprates as d-d charge transfer unstable systems whose description implies the inclusion of the three many-electron valence states CuO\(_{4}^{7-,6-,5-}\) (nominally Cu1+,2+,3+) on an equal footing as a well-defined charge triplet. We introduce a minimal model to describe the charge degree of freedom in cuprates with the on-site Hilbert space reduced to only the three states and make use of the S = 1 pseudospin formalism. The formalism constitutes a powerful method to study complex phenomena in interacting quantum systems characterized by the coexistence and competition of various ordered states. Overall, such a framework provides a simple and systematic methodology to predict and discover new kinds of orders. In particular, the pseudospin formalism provides the most effective way to describe different topological structures, in particular, due to a possibility of a geometrical two-vector description of the on-site states. We introduce and analyze effective pseudospin Hamiltonian with on-site and inter-site charge correlations, two types of a correlated one-particle transfer and two-particle, or the composite boson transfer. The latter is of a principal importance for the HTSC perspectives. The 2D S = 1 pseudospin system is prone to a creation of different topological structures, which form topologically protected inhomogeneous distributions of the eight local S = 1 pseudospin order parameters. We present a short overview of localized topological structures, typical for S = 1 (pseudo)spin systems, focusing on unexpected antiphase domain walls in parent cuprates and so-called quadrupole skyrmion, which are believed to be candidates for a topological charge excitation in parent or underdoped cuprates. Puzzlingly, these unconventional structures can be characterized by an uniform distribution of the mean on-site charge, that makes these invisible for X-rays. Quasi-classical approximation and computer simulation are applied to analyze localized topological defects and evolution of the domain structures in “negative-U” model under charge order-superfluid phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bednorz, J.G., Müller, K. A.: Z. Phys. B Condens. Matter 64(2), 189 (1986). https://doi.org/10.1007/BF01303701

    Article  ADS  Google Scholar 

  2. Uemura, Y.J.: Physica C: Supercond. 282-287, 194 (1997). https://doi.org/10.1016/S0921-4534(97)00194-9

    Article  ADS  Google Scholar 

  3. Micnas, R., Ranninger, J., Robaszkiewicz, S.: Rev. Modern Phys. 62(1), 113 (1990). https://doi.org/10.1103/RevModPhys.62.113

    Article  ADS  Google Scholar 

  4. Alexandrov, A.S.: Phys. Scr. 83(3), 038301 (2011). https://doi.org/10.1088/0031-8949/83/03/038301

    Article  ADS  Google Scholar 

  5. Phillips, P.: Philos. Trans. Royal Soc. Math. Phys. Eng. Sci. 369(1941), 1572 (2011). https://doi.org/10.1098/rsta.2011.0005

    Article  ADS  Google Scholar 

  6. Hizhnyakov, V., Sigmund, E.: Physica C: Supercond. 156(5), 655 (1988). https://doi.org/10.1016/0921-4534(88)90141-4

    Article  ADS  Google Scholar 

  7. Emery, V.J., Kivelson, S.A.: Physica C: Supercond 209(4), 597 (1993). https://doi.org/10.1016/0921-4534(93)90581-A

    Article  ADS  Google Scholar 

  8. Emery, V.J., Kivelson, S.A.: Nature 374(6521), 434 (1995). https://doi.org/10.1038/374434a0

    Article  ADS  Google Scholar 

  9. Emery, V.J., Kivelson, S.A.: Phys. Rev. Lett. 74(16), 3253 (1995). https://doi.org/10.1103/PhysRevLett.74.3253

    Article  ADS  Google Scholar 

  10. Furrer, A., Allenspach, P., Fauth, F., Guillaume, M., Henggeler, W., Mesot, J., Rosenkranz, S.: Physica C: Supercond. 235-240, 261 (1994). https://doi.org/10.1016/0921-4534(94)91363-3

    Article  ADS  Google Scholar 

  11. Tranquada, J.M., Sternlieb, B.J., Axe, J.D., Nakamura, Y., Uchida, S.: Nature 375(6532), 561 (1995). https://doi.org/10.1038/375561a0

    Article  ADS  Google Scholar 

  12. Bianconi, A., Saini, N.L., Lanzara, A., Missori, M., Rossetti, T., Oyanagi, H., Yamaguchi, H., Oka, K., Ito, T.: Phys. Rev. Lett. 76(18), 3412 (1996). https://doi.org/10.1103/PhysRevLett.76.3412

    Article  ADS  Google Scholar 

  13. Zaanen, J., van Saarloos, W.: Physica C: Supercond. 282-287, 178 (1997). https://doi.org/10.1016/S0921-4534(97)00186-X

    Article  ADS  Google Scholar 

  14. Dionne, G.F.: J. Appl. Phys. 69 (8), 5194 (1991). https://doi.org/10.1063/1.348096

    Article  ADS  Google Scholar 

  15. Bersuker, G.I., Goodenough, J.B.: Physica C: Supercond. 274(3-4), 267 (1997). https://doi.org/10.1016/S0921-4534(96)00636-3

    Article  ADS  Google Scholar 

  16. Moskvin, A.S., Physica, B.: Condens. Matter 252(3), 186 (1998). https://doi.org/10.1016/S0921-4526(98)00155-0

    Google Scholar 

  17. Wiegmann, P.B.: Phys. Rev. Lett. 60(9), 821 (1988). https://doi.org/10.1103/PhysRevLett.60.821

    Article  ADS  Google Scholar 

  18. Rodriguez, J.P.: Phys. Rev. B 39(4), 2906 (1989). https://doi.org/10.1103/PhysRevB.39.2906

    Article  ADS  Google Scholar 

  19. Moskvin, A.S., Ovchinnikov, A.S.: Physica B: Condens. Matter 259-261, 476 (1999). https://doi.org/10.1016/S0921-4526(98)00929-6

    Article  ADS  Google Scholar 

  20. Senthil, T., Fisher, M.P.A.: Phys. Rev. Lett. 86(2), 292 (2001). https://doi.org/10.1103/PhysRevLett.86.292

    Article  ADS  Google Scholar 

  21. Campi, G., Bianconi, A., Poccia, N., Bianconi, G., Barba, L., Arrighetti, G., Innocenti, D., Karpinski, J., Zhigadlo, N.D., Kazakov, S.M., Burghammer, M., Zimmermann, M.V., Sprung, M., Ricci, A.: Nature 525(7569), 359 (2015). https://doi.org/10.1038/nature14987

    Article  ADS  Google Scholar 

  22. Moskvin, A.S.: Phys. Rev. B 84(7), 075116 (2011). https://doi.org/10.1103/PhysRevB.84.075116

    Article  ADS  Google Scholar 

  23. Moskvin, A.S.: Low Temp. Phys. 33(2), 234 (2007). https://doi.org/10.1063/1.2719961

    Article  ADS  Google Scholar 

  24. Moskvin, A.S.: Phys. Rev. B 79(11), 115102 (2009). https://doi.org/10.1103/PhysRevB.79.115102

    Article  ADS  Google Scholar 

  25. Moskvin, A.S.: J. Phys. Condens. matter 25(8), 085601 (2013). https://doi.org/10.1088/0953-8984/25/8/085601

    Article  ADS  Google Scholar 

  26. Moskvin, A.S.: J. Phys Conf. Ser. 592(1), 012076 (2015). https://doi.org/10.1088/1742-6596/592/1/012076

    Article  Google Scholar 

  27. Moskvin, A.S.: J. Supercond. Nov. Magn. 29(4), 1057 (2016). https://doi.org/10.1007/s10948-016-3376-7

    Article  Google Scholar 

  28. Batista, C.D., Ortiz, G.: Adv. Phys. 53(1), 1 (2004). https://doi.org/10.1080/00018730310001642086

    Article  ADS  Google Scholar 

  29. Ashkenazi, J.: J. Supercond. Nov. Magn. 24(4), 1281 (2011). https://doi.org/10.1007/s10948-010-0823-8

    Article  MathSciNet  Google Scholar 

  30. Phillips, P.W., Langley, B.W., Hutasoit, J.A.: Phys. Rev. B 88(11), 115129 (2013). https://doi.org/10.1103/PhysRevB.88.115129

    Article  ADS  Google Scholar 

  31. Pisarev, R.V., Moskvin, A.S., Kalashnikova, A.M., Bush, A.A., Rasing, T.: Phys. Rev. B 74 (13), 132509 (2006). https://doi.org/10.1103/PhysRevB.74.132509

    Article  ADS  Google Scholar 

  32. Moskvin, A.S., Neudert, R., Knupfer, M., Fink, J., Hayn, R.: Phys. Rev. B 65(18), 180512 (2002). https://doi.org/10.1103/PhysRevB.65.180512

    Article  ADS  Google Scholar 

  33. Moskvin, A.S., Mȧlek, J., Knupfer, M., Neudert, R., Fink, J., Hayn, R., Drechsler, S.L., Motoyama, N., Eisaki, H., Uchida, S.: Phys. Rev. Lett. 91(3), 037001 (2003). https://doi.org/10.1103/PhysRevLett.91.037001

    Article  ADS  Google Scholar 

  34. Zhang, F.C., Rice, T.M.: Phys. Rev. B 37(7), 3759 (1988). https://doi.org/10.1103/PhysRevB.37.3759

    Article  ADS  Google Scholar 

  35. Moskvin, A.S.: J. Exp. Theor. Phys. Lett. 80(11), 697 (2004). https://doi.org/10.1134/1.1862797

    Article  Google Scholar 

  36. Moskvin, A.S., Panov, Y.D.: Low Temp. Phys. 37(3), 261 (2011). https://doi.org/10.1063/1.3580606

    Article  ADS  Google Scholar 

  37. Moskvin, A.S.: JETP Lett. 96 (6), 385 (2012). https://doi.org/10.1134/S0021364012180087

    Article  ADS  Google Scholar 

  38. Moskvin, A.S.: J. Exp. Theor. Phys. 121(3), 477 (2015). https://doi.org/10.1134/S1063776115090095

    Article  ADS  Google Scholar 

  39. Altman, E., Auerbach, A.: Phys. Rev. Lett. 89(25), 250404 (2002). https://doi.org/10.1103/PhysRevLett.89.250404

    Article  ADS  Google Scholar 

  40. Berg, E., Dalla torre, E.G., Giamarchi, T., Altman, E.: Phys. Rev. B 77(24), 245119 (2008). https://doi.org/10.1103/PhysRevB.77.245119

    Article  ADS  Google Scholar 

  41. Mazza, L., Rizzi, M., Lewenstein, M., Cirac, J.I.: Phys. Rev. A 82(4), 043629 (2010). https://doi.org/10.1103/PhysRevA.82.043629

    Article  ADS  Google Scholar 

  42. Mikushina, N.A., Moskvin, A.S.: Phys. Lett. A 302(1), 8 (2002). https://doi.org/10.1016/S0375-9601(02)01084-8

    Article  ADS  Google Scholar 

  43. Knigavko, A., Rosenstein, B., Chen, Y.F.: Phys. Rev. B 60(1), 550 (1999). https://doi.org/10.1103/PhysRevB.60.550

    Article  ADS  Google Scholar 

  44. Anderson, P.W.: J. Phys. Chem. Solids 59(10-12), 1675 (1998). https://doi.org/10.1016/S0022-3697(98)00081-X

    Article  ADS  Google Scholar 

  45. Nicoletti, D., di Pietro, P., Limaj, O., Calvani, P., Schade, U., Ono, S., Ando, Y., Lupi, S.: J. Phys. 13(12), 123009 (2011). https://doi.org/10.1088/1367-2630/13/12/123009

    Google Scholar 

  46. Gru̇ninger, M., van der Marel, D., Damascelli, A., Erb, A., Nunner, T., Kopp, T.: Phys. Rev. B 62(18), 12422 (2000). https://doi.org/10.1103/PhysRevB.62.12422

    Article  ADS  Google Scholar 

  47. Kishida, H., Matsuzaki, H., Okamoto, H., Manabe, T., Yamashita, M., Taguchi, Y., Tokura, Y.: Nature 405(6789), 929 (2000). https://doi.org/10.1038/35016036

    Article  ADS  Google Scholar 

  48. Ono, M., Miura, K., Maeda, A., Matsuzaki, H., Kishida, H., Taguchi, Y., Tokura, Y., Yamashita, M., Okamoto, H.: Phys. Rev. B 70(8), 085101 (2004). https://doi.org/10.1103/PhysRevB.70.085101

    Article  ADS  Google Scholar 

  49. Maeda, A., Ono, M., Kishida, H., Manako, T., Sawa, A., Kawasaki, M., Tokura, Y., Okamoto, H.: Phys. Rev. B 70(12), 125117 (2004). https://doi.org/10.1103/PhysRevB.70.125117

    Article  ADS  Google Scholar 

  50. Lawler, M.J., Fujita, K., Lee, J., Schmidt, A.R., Kohsaka, Y., Kim, C.K., Eisaki, H., Uchida, S., Davis, J.C., Sethna, J.P., Kim, E.A.: Nature 466(7304), 347 (2010). https://doi.org/10.1038/nature09169

    Article  ADS  Google Scholar 

  51. Haase, J., Jurkutat, M., Kohlrautz, J., Haase, J., Jurkutat, M., Kohlrautz, J.: Condens. Matter 2(2), 16 (2017). https://doi.org/10.3390/condmat2020016

    Article  Google Scholar 

  52. Park, S.R., Fukuda, T., Hamann, A., Lamago, D., Pintschovius, L., Fujita, M., Yamada, K., Reznik, D.: Phys. Rev. B 89(2), 020506 (2014). https://doi.org/10.1103/PhysRevB.89.020506

    Article  ADS  Google Scholar 

  53. Panov, Y.D., Moskvin, A.S., Chikov, A.A., Avvakumov, I.L.: J. Low Temp. Phys. 185(5-6), 409 (2016). https://doi.org/10.1007/s10909-016-1506-z

    Article  ADS  Google Scholar 

  54. Sengupta, P., Batista, C.D.: Phys. Rev. Lett. 98(22), 227201 (2007). https://doi.org/10.1103/PhysRevLett.98.227201

    Article  ADS  Google Scholar 

  55. Hamer, C.J., Rojas, O., Oitmaa, J.: Phys. Rev. b 81(21), 214424 (2010). https://doi.org/10.1103/PhysRevB.81.214424

    Article  ADS  Google Scholar 

  56. Lapa, R.S., Pires, A.S.T.: J. Magn. Magn. Mater. 327, 1 (2013). https://doi.org/10.1016/j.jmmm.2012.09.006

    Article  ADS  Google Scholar 

  57. Moskvin, A.S., Bostrem, I.G., Ovchinnikov, A.S.: J. Exper. Theor. Phys. Lett. 78(12), 772 (2003). https://doi.org/10.1134/1.1664002

    Article  Google Scholar 

  58. Moskvin, A.S.: Phys. Rev. B 69(21), 214505 (2004). https://doi.org/10.1103/PhysRevB.69.214505

    Article  ADS  Google Scholar 

  59. Matsuda, H., Tsuneto, T.: Prog. Theor. Phys. Suppl. 46(0), 411 (1970). https://doi.org/10.1143/PTPS.46.411

    Article  ADS  Google Scholar 

  60. Schmid, G., Todo, S., Troyer, M., Dorneich, A.: Phys. Rev. Lett. 88(16), 167208 (2002). https://doi.org/10.1103/PhysRevLett.88.167208

    Article  ADS  Google Scholar 

  61. Kresin, V.Z.: J. Supercond. Nov. Magn. 31(3), 611 (2018). https://doi.org/10.1007/s10948-017-4382-0

    Article  Google Scholar 

  62. Johnston, D.C.: Phys. Rev. Lett. 62(8), 957 (1989). https://doi.org/10.1103/PhysRevLett.62.957

    Article  ADS  Google Scholar 

  63. Gor’kov, L.P., Teitel’baum, G.B.: Phys. Rev. Lett. 97(24), 247003 (2006). https://doi.org/10.1103/PhysRevLett.97.247003

    Article  ADS  Google Scholar 

  64. Gor’kov, L.P., Teitel’baum, G.B.: J. Phys. Conf. Ser. 108 (1), 012009 (2008). https://doi.org/10.1088/1742-6596/108/1/012009

    Article  Google Scholar 

  65. Yamaji, Y., Imada, M.: Phys. Rev. Lett. 106(1), 016404 (2011). https://doi.org/10.1103/PhysRevLett.106.016404

    Article  ADS  Google Scholar 

  66. Ando, Y., Kurita, Y., Komiya, S., Ono, S., Segawa, K.: Phys. Rev. Lett. 92(19), 197001 (2004). https://doi.org/10.1103/PhysRevLett.92.197001

    Article  ADS  Google Scholar 

  67. Ono, S., Komiya, S., Ando, Y.: Phys. Rev. B 75(2), 024515 (2007). https://doi.org/10.1103/PhysRevB.75.024515

    Article  ADS  Google Scholar 

  68. Panov, Y.D., Moskvin, A.S., Konev, V.V., Vasinovich, E.V., Ulitko, V.A.: Acta Phys. Pol. A 133(3), 426 (2018). https://doi.org/10.12693/APhysPolA.133.426

    Article  Google Scholar 

  69. Belavin, A.A., Polyakov, A.M.: J. Exp. Theor. Phys. Lett. 22(10), 245 (1975)

    Google Scholar 

  70. Sasaki, J., Matsubara, F.: J. Phys. Soc. Jpn. 66(7), 2138 (1997). https://doi.org/10.1143/JPSJ.66.2138

    Article  ADS  Google Scholar 

  71. Voronov, V.P., Ivanov, B.A., Kosevich, A.M.: J. Exp. Theor. Phys. 57(6), 1303 (1983)

    Google Scholar 

  72. Ivanov, B.A., Kosevich, A.M.: J. Exp. Theor. Phys. 45(5), 1050 (1977)

    ADS  Google Scholar 

  73. Gouva, M.E., Wysin, G.M., Bishop, A.R., Mertens, F.G.: Phys. Rev. B 39(16), 11840 (1989). https://doi.org/10.1103/PhysRevB.39.11840

    Article  ADS  Google Scholar 

  74. Borisov, A.B.: J. Exp. Theor. Phys. Lett. 73(5), 242 (2001). https://doi.org/10.1134/1.1371062

    Article  Google Scholar 

  75. Bostrem, I.G., Ovchinnikov, A.S.: J. Exp. Theor. Phys. Lett. 76(12), 716 (2002). https://doi.org/10.1134/1.1556212

    Article  Google Scholar 

  76. Borisov, A.B., Bostrem, I.G., Ovchinnikov, A.S.: J. Exp. Theor. Phys. Lett. 80(2), 103 (2004). https://doi.org/10.1134/1.1804218

    Article  Google Scholar 

  77. Borisov, A.B., Zykov, S.A., Mikushina, N.A., Moskvin, A.S.: Phys. Solid State 44(2), 324 (2002). https://doi.org/10.1134/1.1451023

    Article  ADS  Google Scholar 

  78. Abanov, A., Pokrovsky, V.L.: Phys. Rev. B 58(14), R8889 (1998). https://doi.org/10.1103/PhysRevB.58.R8889

    Article  ADS  Google Scholar 

  79. Ivanov, B.A., Merkulov, A.Y., Stephanovich, V.A., Zaspel, C.E.: Phys. Rev. B 74(22), 224422 (2006). https://doi.org/10.1103/PhysRevB.74.224422

    Article  ADS  Google Scholar 

  80. Galkina, E.G., Kirichenko, E.V., Ivanov, B.A., Stephanovich, V.A.: Phys. Rev. B 79(13), 134439 (2009). https://doi.org/10.1103/PhysRevB.79.134439

    Article  ADS  Google Scholar 

  81. Perelomov, A.: Generalized Coherent States and Their Applications. Springer, Berlin (1986). https://doi.org/10.1007/978-3-642-61629-7

    Book  MATH  Google Scholar 

  82. Istomin, R.A., Moskvin, A.S.: J. Exp. Theor. Phys. Lett. 71 (8), 338 (2000). https://doi.org/10.1134/1.568346

    Article  Google Scholar 

  83. Wiegmann, P.B.: Phys. Rev. Lett. 60(9), 821 (1988). https://doi.org/10.1103/PhysRevLett.60.821

    Article  ADS  Google Scholar 

  84. Shraiman, B.I., Siggia, E.D.: Phys. Rev. Lett. 61(4), 467 (1988). https://doi.org/10.1103/PhysRevLett.61.467

    Article  ADS  MathSciNet  Google Scholar 

  85. Wen, X.G., Zee, A.: Phys. Rev. Lett. 61(8), 1025 (1988). https://doi.org/10.1103/PhysRevLett.61.1025

    Article  ADS  MathSciNet  Google Scholar 

  86. Chakravarty, S., Halperin, B.I., Nelson, D.R.: Phys. Rev. B 39 (4), 2344 (1989). https://doi.org/10.1103/PhysRevB.39.2344

    Article  ADS  Google Scholar 

  87. Voruganti, P., Doniach, S.: Phys. Rev. B 41(13), 9358 (1990). https://doi.org/10.1103/PhysRevB.41.9358

    Article  ADS  Google Scholar 

  88. Gooding, R.J.: Phys. Rev. Lett. 66(17), 2266 (1991). https://doi.org/10.1103/PhysRevLett.66.2266

    Article  ADS  Google Scholar 

  89. Haas, S., Zhang, F.C., Mila, F., Rice, T.M.: Phys. Rev. Lett. 77(14), 3021 (1996). https://doi.org/10.1103/PhysRevLett.77.3021

    Article  ADS  Google Scholar 

  90. Marino, E.C., Neto, M.B.S.: Phys. Rev. Lett. B 64(9), 092511 (2001). https://doi.org/10.1103/PhysRevB.64.092511

    Article  ADS  Google Scholar 

  91. Morinari, T.: Phys. Rev. Lett. B 65(6), 064513 (2002). https://doi.org/10.1103/PhysRevB.65.064513

    Article  ADS  Google Scholar 

  92. Morinari, T.: Phys. Rev. Lett. B 72(10), 104502 (2005). https://doi.org/10.1103/PhysRevB.72.104502

    Article  ADS  Google Scholar 

  93. Nazario, Z., Santiago, D.I.: Phys. Rev. Lett. 97(19), 197201 (2006). https://doi.org/10.1103/PhysRevLett.97.197201

    Article  ADS  Google Scholar 

  94. Raičević, I., Popović, D., Panagopoulos, C., Benfatto, L., Silva Neto, M.B., Choi, E.S., Sasagawa, T.: Phys. Rev. Lett. 106(22), 227206 (2011). https://doi.org/10.1103/PhysRevLett.106.227206

    Article  ADS  Google Scholar 

  95. Bogdanov, A., Hubert, A.: J. Magn. Magn. Mater. 138(3), 255 (1994). https://doi.org/10.1016/0304-8853(94)90046-9

    Article  ADS  Google Scholar 

  96. Rößler, U.K., Bogdanov, A.N., Pfleiderer, C.: Nature 442(7104), 797 (2006). https://doi.org/10.1038/nature05056

    Article  ADS  Google Scholar 

  97. Nagaosa, N., Tokura, Y.: Nat. Nanotechnol. 8(12), 899 (2013). https://doi.org/10.1038/nnano.2013.243

    Article  ADS  Google Scholar 

  98. Varma, C.M.: Phys. Rev. Lett. B 73(15), 155113 (2006). https://doi.org/10.1103/PhysRevB.73.155113

    Article  ADS  Google Scholar 

  99. Green, A.G.: Phys. Rev. B 61(24), R16299 (2000). https://doi.org/10.1103/PhysRevB.61.R16299

    Article  ADS  Google Scholar 

  100. Li, L., Wang, Y., Komiya, S., Ono, S., Ando, Y., Gu, G.D., Ong, N.P.: Phys. Rev. Lett. B 81(5), 054510 (2010). https://doi.org/10.1103/PhysRevB.81.054510

    Article  ADS  Google Scholar 

  101. Timm, C., Girvin, S.M., Fertig, H.A.: Phys. Rev. B 58(16), 10634 (1998). https://doi.org/10.1103/PhysRevB.58.10634

    Article  ADS  Google Scholar 

  102. Egorov, R.F., Bostrem, I.G., Ovchinnikov, A.S.: Phys. Lett. A 292(6), 325 (2002). https://doi.org/10.1016/S0375-9601(01)00813-1

    Article  ADS  MathSciNet  Google Scholar 

  103. Batrouni, G.G., Scalettar, R.T.: Phys. Rev. Lett. 84(7), 1599 (2000). https://doi.org/10.1103/PhysRevLett.84.1599

    Article  ADS  Google Scholar 

  104. Hėbert, F., Batrouni, G.G., Scalettar, R.T., Schmid, G., Troyer, M., Dorneich, A.: Phys. Rev. Lett. B 65(1), 014513 (2001). https://doi.org/10.1103/PhysRevB.65.014513

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (ASM) would like to thank A. Bianconi, R. Micnas, A. Menushenkov, and S.-L. Drechsler for helpful discussions. The work supported by Act 211 Government of the Russian Federation, agreement No 02.A03.21.0006 and by the Ministry of Education and Science, projects 2277 and 5719.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Moskvin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskvin, A.S., Panov, Y.D. Topological Structures in Unconventional Scenario for 2D Cuprates. J Supercond Nov Magn 32, 61–84 (2019). https://doi.org/10.1007/s10948-018-4896-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4896-0

Keywords

Navigation