Color Centers in Diamond as Novel Probes of Superconductivity

Abstract

Magnetic imaging using color centers in diamond through both scanning and wide-field methods offers a combination of unique capabilities for studying superconductivity, for example, enabling accurate vector magnetometry at high temperature or high pressure, with spatial resolution down to the nanometer scale. The paper briefly reviews various experimental modalities in this rapidly developing nascent field and provides an outlook towards possible future directions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Bending, S.J.: Adv. Phys. 48(4), 449 (1999). https://doi.org/10.1080/000187399243437

    ADS  Article  Google Scholar 

  2. 2.

    Kresin, V.Z., Ovchinnikov, Y.N., Wolf, S.A.: Phys. Rep. 431, 231 (2006). https://doi.org/10.1016/j.physrep.2006.05.006

    ADS  Article  Google Scholar 

  3. 3.

    Wolf, S.A., Kresin, V.Z.: Novel Superconductivity. Springer Science & Business Media (2012)

  4. 4.

    Kresin, V.Z., Ovchinnikov, YN: Physics-Uspekhi 51(5), 427 (2008). http://stacks.iop.org/1063-7869/51/i=5/a=R01

    ADS  Article  Google Scholar 

  5. 5.

    Kresin, V.: J. Supercond. Nov. Magn. 25(3), 711 (2012). https://doi.org/10.1007/s10948-012-1439-y

    Article  Google Scholar 

  6. 6.

    Kresin, V.Z., Ovchinnikov, Y.N.: J. Supercond. Nov. Magn. 26 (4), 745 (2013). https://doi.org/10.1007/s10948-012-1961-y

    Article  Google Scholar 

  7. 7.

    Amsüss, R., Saito, S., Munro, W.: In: Prawer, S., Aharonovich, I. (eds.) Quantum Information Processing with Diamond, pp 264–290. Woodhead Publishing (2014). https://doi.org/10.1533/9780857096685.2.264

  8. 8.

    Chernobrod, B.M., Berman, G.P.: J. Appl. Phys. 97(1), 014903 (2005). https://doi.org/10.1063/1.1829373

    ADS  Article  Google Scholar 

  9. 9.

    Taylor, J.M., Cappellaro, P., Childress, L., Jiang, L., Neumann, P., Budker, D., Hemmer, P.R., Yacoby, A., Walsworth, R., Lukin, M.D.: Nat. Phys. 4, 810 (2008). https://doi.org/10.1038/nphys1075

    Article  Google Scholar 

  10. 10.

    Degen, C.L.: Appl. Phys. Lett. 92(243111) (2008)

  11. 11.

    Acosta, V.M., Bauch, E., Ledbetter, M.P., Waxman, A., Bouchard, L.S., Budker, D.: Phys. Rev. Lett. 104, 070801 (2010). https://doi.org/10.1103/PhysRevLett.104.070801

    ADS  Article  Google Scholar 

  12. 12.

    Acosta, V.M., Bauch, E., Jarmola, A., Zipp, L.J., Ledbetter, M.P., Budker, D.: Appl. Phys. Lett. 97, 174104 (2010)

    ADS  Article  Google Scholar 

  13. 13.

    Dolde, F., Fedder, H., Doherty, M.W., Nöbauer, T., Rempp, F., Balasubramanian, G., Wolf, T., Reinhard, F., Hollenberg, L.C.L., Jelezko, F., Wrachtrup, J.: Nat. Phys. 7, 459 (2011). https://doi.org/10.1038/nphys1969

    Article  Google Scholar 

  14. 14.

    Rondin, L., Tetienne, J.P., Hingant, T., Roch, J.F., Maletinsky, P., Jacques, V.: Rep. Prog. Phys. 77, 056503 (2014)

    ADS  Article  Google Scholar 

  15. 15.

    Jelezko, F., Wrachtrup, J.: Phys. Stat. Solidi (a) 203(13), 3207 (2006). https://doi.org/10.1002/pssa.200671403

    ADS  Article  Google Scholar 

  16. 16.

    Robledo, L., Bernien, H., van der Sar, T., Hanson, R.: New J. Phys. 13(2), 025013 (2011). http://stacks.iop.org/1367-2630/13/i=2/a=025013

    ADS  Article  Google Scholar 

  17. 17.

    Dumeige, Y., Chipaux, M., Jacques, V., Treussart, F., Roch, J.F., Debuisschert, T., Acosta, V., Jarmola, A., Jensen, K., Kehayias, P., Budker, D.: Phys. Rev. B 87(155202) (2013)

  18. 18.

    Kalb, N., Humphreys, P.C., Slim, J.J., Hanson, R.: Phys. Rev. A 97, 062330 (2018). https://doi.org/10.1103/PhysRevA.97.062330

    ADS  Article  Google Scholar 

  19. 19.

    Tetienne, J., Rondin, L., Spinicelli, P., Chipaux, M., Debuisschert, T., Roch, J., Jacques, V.: New J. Phys. 14, 103033 (2012). https://doi.org/10.1088/1367-2630/14/10/103033

    Article  Google Scholar 

  20. 20.

    Doherty, M.W., Manson, N.B., Delaney, P., Jelezko, F., Wrachtrup, J., Hollenberg, L.C.: Phys. Rep. 528(1), 1 (2013)

    ADS  Article  Google Scholar 

  21. 21.

    Jensen, K., Kehayias, P., Budker, D.: High Sensitivity Magnetometers. Springer International Publishing, chap. Magnetometry with Nitrogen-Vacancy Centers in Diamond, pp. 553–576 (2017)

  22. 22.

    Siyushev, P., Kaiser, F., Jacques, V., Gerhardt, I., Bischof, S., Fedder, H., Dodson, J., Markham, M., Twitchen, D., Jelezko, F., Wrachtrup, J.: Appl. Phys. Lett. 97(24), 241902 (2010). https://doi.org/10.1063/1.3519849. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3017569/

    ADS  Article  Google Scholar 

  23. 23.

    Gustafsson, M.G.L.: Proc. Natl. Acad. Sci. 102(37), 13081 (2005). https://doi.org/10.1073/pnas.0406877102. http://www.pnas.org/content/102/37/13081

    ADS  Article  Google Scholar 

  24. 24.

    Chmyrov, A., Keller, J., Grotjohann, T., Ratz, M., d’Este, E., Jakobs, S., Eggeling, C., Hell, S.W.: Nat. Methods 10, 737 EP (2013). https://doi.org/10.1038/nmeth.2556

    Article  Google Scholar 

  25. 25.

    Thiel, L., Rohner, D., Ganzhorn, M., Appel, P., Neu, E., Müller, B., Kleiner, R., Koelle, D., Maletinsky, P.: Nat. Nanotechnol. 11, 677 (2016). https://doi.org/10.1038/nnano.2016.63

    ADS  Article  Google Scholar 

  26. 26.

    Pelliccione, M., Jenkins, A., Ovartchaiyapong, P., Reetz, C., Emmanouilidou, E., Ni, N., Jayich, A.C.B.: Nat. Nanotechnol. 11(8), 700 (2016). https://doi.org/10.1038/nnano.2016.68

    ADS  Article  Google Scholar 

  27. 27.

    Grinolds, M., Warner, M., De Greve, K., Dovzhenko, Y., Thiel, L., Walsworth, R.L.L., Hong, S., Maletinsky, P., Yacoby, A.: Nat. Nanotechnol. 9, 279 (2014). https://doi.org/10.1038/nnano.2014.30

    ADS  Article  Google Scholar 

  28. 28.

    Appel, P., Neu, E., Ganzhorn, M., Barfuss, A., Batzer, M., Gratz, M., Tschöpe, A., Maletinsky, P.: Rev. Sci. Instrum. 87(063703), 063703 (2016)

    ADS  Article  Google Scholar 

  29. 29.

    Bouchard, L.S., Acosta, V.M., Bauch, E., Budker, D.: New J. Phys. 13(025017), 025017 (2011)

    ADS  Article  Google Scholar 

  30. 30.

    Lim, H.J., Byrne, J.G.: Metall. Mater. Trans. B 28(3), 425 (1997). https://doi.org/10.1007/s11663-997-0108-1

    Article  Google Scholar 

  31. 31.

    Acosta, V.M., Bauch, E., Ledbetter, M.P., Waxman, A., Bouchard, L.S., Budker, D.: Phys. Rev. Lett. 104, 070801 (2010). https://doi.org/10.1103/PhysRevLett.104.070801. https://link.aps.org/doi/10.1103/PhysRevLett.104.070801

    ADS  Article  Google Scholar 

  32. 32.

    Chen, X.D., Dong, C.H., Sun, F.W., Zou, C.L., Cui, J.M., Han, Z.F., Guo, G.C.: Appl. Phys. Lett. 99(16), 161903 (2011). https://doi.org/10.1063/1.3652910

    ADS  Article  Google Scholar 

  33. 33.

    Doherty, M.W., Acosta, V.M., Jarmola, A., Barson, M.S.J., Manson, N.B., Budker, D., Hollenberg, L.C.L.: Phys. Rev. B 90, 041201 (2014). https://doi.org/10.1103/PhysRevB.90.041201. https://link.aps.org/doi/10.1103/PhysRevB.90.041201

    ADS  Article  Google Scholar 

  34. 34.

    Laraoui, A., Aycock-Rizzo, H., Gao, Y., Lu, X., Riedo, E., Meriles, C.A.: Nat. Commun. 6, 8954 EP (2015). https://doi.org/10.1038/ncomms9954

    ADS  Article  Google Scholar 

  35. 35.

    Kucsko, G., Maurer, P.C., Yao, N.Y., Kubo, M., Noh, H.J., Lo, P.K., Park, H., Lukin, M.D.: Nature 500, 54 EP (2013). https://doi.org/10.1038/nature12373

    ADS  Article  Google Scholar 

  36. 36.

    Kehayias, P., Mrózek, M., Acosta, V.M., Jarmola, A., Rudnicki, D.S., Folman, R., Gawlik, W., Budker, D.: Phys. Rev. B 89, 245202 (2014). https://doi.org/10.1103/PhysRevB.89.245202. https://link.aps.org/doi/10.1103/PhysRevB.89.245202

    ADS  Article  Google Scholar 

  37. 37.

    Fang, K., Acosta, V.M., Santori, C., Huang, Z., Itoh, K.M., Watanabe, H., Shikata, S., Beausoleil, R.G.: Phys. Rev. Lett. 110, 130802 (2013). https://doi.org/10.1103/PhysRevLett.110.130802. https://link.aps.org/doi/10.1103/PhysRevLett.110.130802

    ADS  Article  Google Scholar 

  38. 38.

    Waxman, A., Schlussel, Y., Groswasser, D., Acosta, V.M., Bouchard, L.S., Budker, D., Folman, R.: Phys. Rev. B 89(054509), 054509 (2014). https://doi.org/10.1103/PhysRevB.89.054509

    ADS  Article  Google Scholar 

  39. 39.

    Alfasi, N., Masis, S., Shtempluck, O., Kochetok, V., Buks, E.: AIP Adv. 6(7), 075311 (2016). https://doi.org/10.1063/1.4959225

    ADS  Article  Google Scholar 

  40. 40.

    Schlussel, Y., Lenz, T., Rohner, D., Bar-Haim, Y., Bougas, L., Groswasser, D., Kieschnick, M., Rozenberg, E., Thiel, L., Waxman, A., et al.: arXiv:1803.01957 (2018)

  41. 41.

    Nusran, N.M., Joshi, K.R., Cho, K., Tanatar, M.A., Meier, W.R., Bud’ko, S.L., Canfield, P.C., Liu, Y., Lograsso, T.A., Prozorov, R.: New J. Phys. 20(4), 043010 (2018). http://stacks.iop.org/1367-2630/20/i=4/a=043010

    ADS  Article  Google Scholar 

  42. 42.

    Joshi, K.R., Nusran, N.M., Cho, K., Tanatar, M.A., Meier, W.R., Bud’ko, S.L., Canfield, P.C., Prozorov, R: ArXiv e-prints (2018)

  43. 43.

    Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.F., Jacques, V.: Phys. Rev. B 84, 195204 (2011). https://doi.org/10.1103/PhysRevB.84.195204. https://link.aps.org/doi/10.1103/PhysRevB.84.195204

    ADS  Article  Google Scholar 

  44. 44.

    Casola, F., van der Sar, T., Yacoby, A.: Nat. Rev. Mater. 3, 17088 EP (2018). https://doi.org/10.1038/natrevmats.2017.88

    ADS  Article  Google Scholar 

  45. 45.

    Lesik, M., Raatz, N., Tallaire, A., Spinicelli, P., John, R., Achard, J., Gicquel, A., Jacques, V., Roch, J., Meijer, J., Pezzagna, S.: Phys. Stat. Solidi (A) 213, 2594 (2016). https://doi.org/10.1002/pssa.201600219

    ADS  Article  Google Scholar 

  46. 46.

    Lesik, M., Tetienne, J.P., Tallaire, A., Achard, J., Mille, V., Gicquel, A., Roch, J.F., Jacques, V.: Appl. Phys. Lett. 104, 113107 (2014)

    ADS  Article  Google Scholar 

  47. 47.

    Lesik, M., Plays, T., Tallaire, A., Achard, J., Brinza, O., William, L., Chipaux, M., Toraille, L., Debuisschert, T., Gicquel, A., Roch, J., Jacques, V.: Diamond Relat. Mater. 56. https://doi.org/10.1016/j.diamond.2015.05.003 (2015)

  48. 48.

    Kleinsasser, E.E., Stanfield, M.M., Banks, J.K.Q., Zhu, Z., Li, W.D., Acosta, V.M., Watanabe, H., Itoh, K.M., Fu, K.M.C.: Appl. Phys. Lett. 108(20), 202401 (2016). https://doi.org/10.1063/1.4949357

    ADS  Article  Google Scholar 

  49. 49.

    Rittweger, E., Han, K.Y., Irvine, S.E., Eggeling, C., Hell, S.W.: Nat. Photon. 3, 144 (2009). https://doi.org/10.1038/nphoton.2009.2

    ADS  Article  Google Scholar 

  50. 50.

    Tetienne, J.P., Hingant, T., Kim, J.V., Diez, L.H., Adam, J.P., Garcia, K., Roch, J.F., Rohart, S., Thiaville, A., Ravelosona, D., Jacques, V.: Science 344, 1366 (2014). https://doi.org/10.1126/science.1250113

    ADS  Article  Google Scholar 

  51. 51.

    Gross, I., Akhtar, W., Garcia, V., Martínez, L.J., Chouaieb, S., Garcia, K., Carrétéro, C., Barthélémy, A., Appel, P., Maletinsky, P., Kim, J.V., Chauleau, J.Y., Jaouen, N., Viret, M., Bibes, M., Fusil, S., Jacques, V.: Nature 549, 252 (2017). https://doi.org/10.1038/nature23656

    ADS  Article  Google Scholar 

  52. 52.

    Balasubramanian, G., Chan, I., Kolesov, R., Al-Hmoud, M., Tisler, J., Shin, C., Kim, C., Wojcik, A., Hemmer, A., amd Krueger, P.R., Hanke, T., Leitenstorfer, A., Bratschitsch, R., Jelezko, F., Wrachtrup, J.: Nature 455, 648 (2008). https://doi.org/10.1038/nature07278

    ADS  Article  Google Scholar 

  53. 53.

    Rondin, L., Tetienne, J.P., Spinicelli, P., Dal Savio, C., Karrai, K., Dantelle, G., Thiaville, A., Rohart, S., Roch, J.F., Jacques, V.: Appl. Phys. Lett. arXiv:1108.4438. in print (2012)

  54. 54.

    Maletinsky, P., Hong, S., Grinolds, M., Hausmann, B., Lukin, M., Walsworth, R., Loncar, M., Yacoby, A.: Nat. Nanotechnol. 7, 320 (2012). https://doi.org/10.1038/NNANO.2012.50

    ADS  Article  Google Scholar 

  55. 55.

    Grinolds, M.S., Hong, S., Maletinsky, P., Luan, L., Lukin, M.D., Walsworth, R.L., Yacoby, A.: Nat. Phys. 9, 215 (2013). https://doi.org/10.1038/nphys2543

    Article  Google Scholar 

  56. 56.

    Babinec, T.M., Hausmann, B.J., Khan, M., Zhang, Y., Maze, J.R., Hemmer, P.R., Lončar, M.: Nat. Nanotechnol. 5, 195 (2010)

    ADS  Article  Google Scholar 

  57. 57.

    Roth, B.J., Sepulveda, N.G., Wikswo, J.P.: J. Appl. Phys. 65(1), 361 (1989). https://doi.org/10.1063/1.342549

    ADS  Article  Google Scholar 

  58. 58.

    Appel, P., Neu, E., Ganzhorn, M., Barfuss, A., Marietta, B, Gratz, M., Tschöpe, A., Maletinsky, P.: Rev. Sci. Instrum. 87, 063703 (2016). https://doi.org/10.1063/1.4952953

    ADS  Article  Google Scholar 

  59. 59.

    Blatter, G., Feigel’man, M.V., Geshkenbein, V.B., Larkin, A.I., Vinokur, V.M.: Rev. Mod. Phys. 66, 1125 (1994). https://doi.org/10.1103/RevModPhys.66.1125

    ADS  Article  Google Scholar 

  60. 60.

    Robledo, L., Childress, L., Bernien, H., Hensen, B., Alkemade, P.F.A., Hanson, R.: Nature 477(7366), 574 (2011). https://doi.org/10.1038/nature10401

    ADS  Article  Google Scholar 

  61. 61.

    Yale, C.G., Buckley, B.B., Christle, D.J., Burkard, G., Heremans, F.J., Bassett, L.C., Awschalom, D.D.: Proc. Natl. Acad. Sci. 110, 7595 (2013). https://doi.org/10.1073/pnas.1305920110

    ADS  Article  Google Scholar 

  62. 62.

    Auslaender, O.M., Luan, L., Straver, E.W.J., Hoffman, J.E., Koshnick, N.C., Zeldov, E., Bonn, D.A., Liang, R., Hardy, W.N., Moler, K.A.: Nat. Phys. 5(1), 35 (2008). https://doi.org/10.1038/nphys1127

    Article  Google Scholar 

  63. 63.

    Pearl, J.: Appl. Phys. Lett. 5(4), 65 (1964). https://doi.org/10.1063/1.1754056

    ADS  Article  Google Scholar 

  64. 64.

    Carneiro, G., Brandt, E.H.: Phys. Rev. B 61, 6370 (2000). https://doi.org/10.1103/PhysRevB.61.6370

    ADS  Article  Google Scholar 

  65. 65.

    Pezzagna, S., Naydenoc, B., Jelezko, F., Wrachtrup, J., Meijer, J.: New J. Phys. 12(065017), 065017 (2010). https://doi.org/10.1088/1367-2630/12/6/065017

    ADS  Article  Google Scholar 

  66. 66.

    Myers, B.A., Das, A., Dartiailh, M.C., Ohno, K., Awschalom, D.D., Bleszynski Jayich, A.C.: Phys. Rev. Lett. 113, 027602 (2014). https://doi.org/10.1103/PhysRevLett.113.027602

    ADS  Article  Google Scholar 

  67. 67.

    Shields, B., Hedrich, N., Maletinsky, P.: in preparation (2018)

  68. 68.

    Fischer, O., Kugler, M., Maggio-Aprile, I., Berthod, C., Renner, C.: Rev. Mod. Phys. 79, 353 (2007). https://doi.org/10.1103/RevModPhys.79.353

    ADS  Article  Google Scholar 

  69. 69.

    Kirtley, J.R.: Rep. Prog. Phys. 73(12), 126501 (2010). https://doi.org/10.1088/0034-4885/73/12/126501. http://iopscience.iop.org/0034-4885/73/12/126501

    ADS  Article  Google Scholar 

  70. 70.

    Suderow, H., Guillamȯn, I., Rodrigo, J.G., Vieira, S.: Supercond. Sci. Technol. 27(6), 063001 (2014). http://stacks.iop.org/0953-2048/27/i=6/a=063001

    ADS  Article  Google Scholar 

  71. 71.

    Vasyukov, D., Anahory, Y., Embon, L., Halbertal, D., Cuppens, J., Neeman, L., Finkler, A., Segev, Y., Myasoedov, Y., Rappaport, M.L., Huber, M.E., Zeldov, E.: Nat. Nanotechnol. 8(9), 639 (2013). https://doi.org/10.1038/nnano.2013.169

    ADS  Article  Google Scholar 

  72. 72.

    Embon, L., Anahory, Y., Suhov, A., Halbertal, D., Cuppens, J., Yakovenko, A., Uri, A., Myasoedov, Y., Rappaport, M.L., Huber, M.E., et al.: Sci. Rep. 5, 7598 (2015). https://doi.org/10.1038/srep07598

    ADS  Article  Google Scholar 

  73. 73.

    Embon, L., Anahory, Y., Jelić, Ž.L., Lachman, E.O., Myasoedov, Y., Huber, M.E., Mikitik, G.P., Silhanek, A.V., Milošević, M.V., Gurevich, A., et al.: Nat. Commun. 8(1), 85 (2017). https://doi.org/10.1038/s41467-017-00089-3

    ADS  Article  Google Scholar 

  74. 74.

    Degen, C.L., Reinhard, F., Cappellaro, P.: Rev. Mod. Phys. 89(3), 035002 (2017). https://doi.org/10.1103/RevModPhys.89.035002

    ADS  Article  Google Scholar 

  75. 75.

    Zeinali, A., Golod, T., Krasnov, V.M.: Phys. Rev. B 94, 214506 (2016). https://doi.org/10.1103/PhysRevB.94.214506. https://link.aps.org/doi/10.1103/PhysRevB.94.214506

    ADS  Article  Google Scholar 

  76. 76.

    Embon, L., Anahory, Y., Jelić, Z̆. L., Lachman, E.O., Myasoedov, Y., Huber, M.E., Mikitik, G., Silhanek, A.V., Milos̆ević, M.V., Gurevich, A., Zeldov, E.: Nat. Commun. 8(85), 85 (2017). https://doi.org/10.1038/s41467-017-00089-3

    ADS  Article  Google Scholar 

  77. 77.

    Lüscher, A., Milstein, A.I., Sushkov, O.P.: Phys. Rev. Lett. 98, 037001 (2007). https://doi.org/10.1103/PhysRevLett.98.037001. https://link.aps.org/doi/10.1103/PhysRevLett.98.037001

    ADS  Article  Google Scholar 

  78. 78.

    Kolkowitz, S., Safira, A., High, A.A., Devlin, R.C., Choi, S., Unterreithmeier, Q.P., Patterson, D., Zibrov, A.S., Manucharyan, V.E., Park, H., Lukin, M.D.: Science 347(6226), 1129 (2015). https://doi.org/10.1126/science.aaa4298. http://science.sciencemag.org/content/347/6226/1129

    ADS  Article  Google Scholar 

  79. 79.

    Kumar, D., Chandran, M., Ramachandra Rao, M.S.: Appl. Phys. Lett. 110(19), 191602 (2017). https://doi.org/10.1063/1.4982591

    ADS  Article  Google Scholar 

  80. 80.

    Doherty, M.W., Struzhkin, V.V., Simpson, D.A., McGuinness, L.P., Meng, Y., Stacey, A., Karle, T.J., Hemley, R.J., Manson, N.B., Hollenberg, L.C.L., Prawer, S.: Phys. Rev. Lett. 112, 047601 (2014). https://doi.org/10.1103/PhysRevLett.112.047601. https://link.aps.org/doi/10.1103/PhysRevLett.112.047601

    ADS  Article  Google Scholar 

  81. 81.

    Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V., Shylin, S.I.: Nature 525, 73 EP (2015). https://doi.org/10.1038/nature14964

    ADS  Article  Google Scholar 

  82. 82.

    Gor’kov, L.P., Kresin, V.Z.: Rev. Mod. Phys. 90, 011001 (2018). https://doi.org/10.1103/RevModPhys.90.011001. https://link.aps.org/doi/10.1103/RevModPhys.90.011001

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank V. Z. Kresin for initiating and encouraging this review and M. L. Cohen, M. Eremets, J.-F. Roche, O. P. Sushkov, and N. Yao for the useful discussions.

Funding

This study received financial support from the NCCR QSIT, a competence center funded by the Swiss NSF, through the Swiss Nanoscience Institute, by the EU FP7 project DIADEMS (Grant No. 611143), and through SNF Project Grant No. 169321 and No. 155845; this work was additionally supported by the German Federal Ministry of Education and Research (BMBF) within the Quantumtechnologien program (FKZ 13N14439), the DFG DIP project Ref. FO 703/2-1, and by the Israeli Science Foundation. V. M. Acosta received funding support from the Beckman Young Investigator Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dmitry Budker.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Acosta, V.M., Bouchard, L.S., Budker, D. et al. Color Centers in Diamond as Novel Probes of Superconductivity. J Supercond Nov Magn 32, 85–95 (2019). https://doi.org/10.1007/s10948-018-4877-3

Download citation

Keywords

  • Diamond color centers
  • High-temperature superconductivity
  • Vortices
  • Scanning and wide-field imaging