Skip to main content
Log in

Thermal Decomposition Synthesis of MgFe2O4 Nanoparticles for Magnetic Hyperthermia

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this work, the effects of the thermal decomposition temperature and time on the structure, cation distributions, magnetic properties, and AC magnetically induced heating characteristics of MgFe2O4 nanoparticles were investigated. The structure and cation distributions between the tetrahedral and octahedral sites determined by X-ray diffraction method showed single-phase MgFe2O4 nanoparticles had a partially inverse structure. The inversion coefficient increased using high reaction temperature and time. The square-like shape and small magnesium ferrite nanoparticles with narrow particle size distribution were synthesized at high reaction temperatures, as observed by transmission electron microscopy. Magnetic properties of MgFe2O4 nanoparticles studied by vibrating sample magnetometry showed the ferrimagnetic characteristics with the highest saturation magnetization of 24 emu/g at a reaction temperature of 300 °C for 60 min. Furthermore, the AC magnetically induced heating characteristics of MgFe2O4 nanoparticles were correlated to the saturation magnetization and coercivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reddy, M.P., Shakoor, R.A., Mohamed, A.M.A., Gupta, M., Huang, Q.: Effect of sintering temperature on the structural and magnetic properties of MgFe2O4 ceramics prepared by spark plasma sintering. Ceram. Int 42, 4221–4227 (2016)

    Article  Google Scholar 

  2. Bahadur, D.: Current trends in applications of magnetic ceramic materials. Bull. Mater. Sci. 15, 431–439 (1992)

    Article  Google Scholar 

  3. Barati, M.R., Selomulya, C., Suzuki, K.: Particle size dependence of heating power in MgFe2O4 nanoparticles for hyperthermia therapy application. J. Appl. Phys. 115, 17B522 (2014)

    Article  Google Scholar 

  4. Périgo, E.A., Hemery, G., Sandre, O., Ortega, D., Garaio, E., Plazaola, F., Teran, F.J.: Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2, 041302 (2015)

    Article  Google Scholar 

  5. Kobayashi, T.: Cancer hyperthermia using magnetic nanoparticles. Biotechnol. J. 6, 1342–1347 (2011)

    Article  Google Scholar 

  6. Silvio, D., Rudolf, H.: Magnetic particle hyperthermia—a promising tumour therapy Nanotechnology 25, 452001 (2014)

    Article  Google Scholar 

  7. Deatsch, A.E., Evans, B.A.: Heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater. 354, 163–172 (2014)

    Article  ADS  Google Scholar 

  8. Jeun, M., Park, S., Jang, G.H., Lee, K.H.: Tailoring MgxMn1−xFe2O4 superparamagnetic nanoferrites for magnetic fluid hyperthermia applications. ACS Appl. Mater. Interfaces 6, 16487–16492 (2014)

    Article  Google Scholar 

  9. Gonzales-Weimuller, M., Zeisberger, M., Krishnan, K.M.: Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J. Magn. Magn. Mater. 321, 1947–1950 (2009)

    Article  ADS  Google Scholar 

  10. Akbari, S., Masoudpanah, S.M., Mirkazemi, S.M., Aliyan, N.: PVA assisted coprecipitation synthesis and characterization of MgFe2O4 nanoparticles. Ceram. Int. 43, 6263–6267 (2017)

    Article  Google Scholar 

  11. Ilhan, S., Izotova, S.G., Komlev, A.A.: Synthesis and characterization of MgFe2O4 nanoparticles prepared by hydrothermal decomposition of co-precipitated magnesium and iron hydroxides. Ceram. Int. 41, 577–585 (2015)

    Article  Google Scholar 

  12. Köferstein, R., Walther, T., Hesse, D., Ebbinghaus, S.G.: Preparation and characterization of nanosized magnesium ferrite powders by a starch-gel process and corresponding ceramics. J. Mater. Sci. 48, 6509–6518 (2013)

    Article  ADS  Google Scholar 

  13. Šepelák, V., Baabe, D., Mienert, D., Litterst, F.J., Becker, K.D.: Enhanced magnetisation in nanocrystalline high-energy milled MgFe2O4. Scripta Materialia 48, 961–966 (2003)

    Article  Google Scholar 

  14. Randhawa, B.S., Kaur, H., Dosanjh, H.S., Singh, J.: Precursor route for the synthesis of MgFe2O4 nanoparticles from the thermolysis of magnesium hexapropionatoferrate(III). Ceram. Int. 42, 8891–8894 (2016)

    Article  Google Scholar 

  15. Maity, D., Chandrasekharan, P., Pradhan, P., Chuang, K.-H., Xue, J.-M., Feng, S.-S., Ding, J.: Novel synthesis of superparamagnetic magnetite nanoclusters for biomedical applications. J. Mater. Chem. 21, 14717–14724 (2011)

    Article  Google Scholar 

  16. Schneider, T., Löwa, A., Karagiozov, S., Sprenger, L., Gutiérrez, L., Esposito, T., Marten, G., Saatchi, K., Häfeli, U.O.: Facile microwave synthesis of uniform magnetic nanoparticles with minimal sample processing. J. Magn. Magn. Mater. 421, 283–291 (2017)

    Article  ADS  Google Scholar 

  17. Sánchez, J., Cortés-Hernández, D.A., Escobedo-Bocardo, J.C., Almanza-Robles, J.M., Reyes-Rodríguez, P.Y., Jasso-Terán, R.A., Bartolo-Pérez, P., De-León-Prado, L.E.: Synthesis of MnxGa1−xFe2O4 magnetic nanoparticles by thermal decomposition method for medical diagnosis applications. J. Magn. Magn. Mater 427, 272–275 (2017)

    Article  ADS  Google Scholar 

  18. Kandasamy, G., Maity, D.: Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int. J. Pharm. 496, 191–218 (2015)

    Article  Google Scholar 

  19. Maity, D., Agrawal, D.C.: Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J. Magn. Magn. Mater. 308, 46–55 (2007)

    Article  ADS  Google Scholar 

  20. Maity, D., Ding, J., Xue, J.-M.: Synthesis of magnetite nanoparticles by thermal decomposition: time, temperature, surfactant and solvent effects. Funct. Mater. Lett. 1, 189–193 (2008)

    Article  Google Scholar 

  21. Maity, D., Kale, S.N., Kaul-Ghanekar, R., Xue, J.-M., Ding, J.: Studies of magnetite nanoparticles synthesized by thermal decomposition of iron (III) acetylacetonate in tri(ethylene glycol). J. Magn. Magn. Mater. 321, 3093–3098 (2009)

    Article  ADS  Google Scholar 

  22. Maity, D., Choo, S.-G., Yi, J., Ding, J., Xue, J.M.: Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route. J. Magn. Magn. Mater. 321, 1256–1259 (2009)

    Article  ADS  Google Scholar 

  23. Sickafus, K.E., Wills, J.M., Grimes, N.W.: Structure of spinel. J. Am. Ceram. Soc. 82, 3279–3292 (1999)

    Article  Google Scholar 

  24. Valenzuela, R.: Magnetic Ceramics. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  25. Najmoddin, N., Beitollahi, A., Kavas, H., Mohseni, S.M., Rezaie, H., Åkerman, J., Toprak, M.S.: XRD cation distribution and magnetic properties of mesoporous Zn-substituted CuFe2O4. Ceram. Int 40, 3619–3625 (2014)

    Article  Google Scholar 

  26. Goldman, A.: Modem ferrite technology, 2nd edn. Springer, Pittsburgh (2006)

    Google Scholar 

  27. Zaki, H.M., Al-Heniti, S., Al Shehri, N.: New scheme for cation distribution and electrical characterization of nanocrystalline aluminum doped magnesium ferrite MgAlxFe2−xO4. Physica B: Conden. Matter 436, 157–163 (2014)

    Article  ADS  Google Scholar 

  28. Khot, V.M., Salunkhe, A.B., Thorat, N.D., Phadatare, M.R., Pawar, S.H.: Induction heating studies of combustion synthesized MgFe2O4 nanoparticles for hyperthermia applications. J. Magn. Magn. Mater 332, 48–51 (2013)

    Article  ADS  Google Scholar 

  29. Shahraki, R.R., Ebrahimi, M., Ebrahimi, S.A.S., Masoudpanah, S.M.: Structural characterization and magnetic properties of superparamagnetic zinc ferrite nanoparticles synthesized by the coprecipitation method. J. Magn. Magn. Mater. 324, 3762–3765 (2012)

    Article  ADS  Google Scholar 

  30. Masoudpanah, S.M., Ebrahimi, S.A.S., Derakhshani, M., Mirkazemi, S.M.: Structure and magnetic properties of La substituted ZnFe2O4 nanoparticles synthesized by sol–gel autocombustion method. J. Magn. Magn. Mater 370, 122–126 (2014)

    Article  ADS  Google Scholar 

  31. Socrates, G.: Infrared and raman characteristic group frequencies, 1st edn. Wiley, New York (2001)

    Google Scholar 

  32. Nakamoto, K., Nakamoto, K.: Infrared and raman spectra of inorganic and coordination compounds. Wiley, New York (1977)

    Google Scholar 

  33. Pathak, T.K., Vasoya, N.H., Lakhani, V.K., Modi, K.B.: Structural and magnetic phase evolution study on needle-shaped nanoparticles of magnesium ferrite. Ceram. Int. 36, 275–281 (2010)

    Article  Google Scholar 

  34. Meng, Y.Y., Liu, Z.W., Dai, H.C., Yu, H.Y., Zeng, D.C., Shukla, S., Ramanujan, R.V.: Structure and magnetic properties of Mn(Zn)Fe2−xRExO4 ferrite nano-powders synthesized by co-precipitation and refluxing method. Powder Technol. 229, 270–275 (2012)

    Article  Google Scholar 

  35. Xu, Y., Sherwood, J., Qin, Y., Holler, R.A., Bao, Y.: A general approach to the synthesis and detailed characterization of magnetic ferrite nanocubes. Nanoscale 7, 12641–12649 (2015)

    Article  ADS  Google Scholar 

  36. Cruz-Franco, B., Gaudisson, T., Ammar, S., Bolarín-Miró, A.M., de Jesús, F.S., Mazaleyrat, F., Nowak, S., Vázquez-Victorio, G., Ortega-Zempoalteca, R., Valenzuela, R.: Magnetic properties of nanostructured spinel ferrites. IEEE Trans. Magn. 50, 1–6 (2014)

    Article  Google Scholar 

  37. Mathew, D.S., Juang, R.-S.: An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129, 51–65 (2007)

    Article  Google Scholar 

  38. Willard, M.A., Nakamura, Y., Laughlin, D.E., McHenry, M.E.: Magnetic properties of ordered and disordered spinel-phase ferrimagnets. J. Am. Ceram. Soc. 82, 3342–3346 (1999)

    Article  Google Scholar 

  39. Sharifi, I., Shokrollahi, H., Amiri, S.: Ferrite-based magnetic nanofluids used in hyperthermia applications. J. Magn. Magn. Mater. 324, 903–915 (2012)

    Article  ADS  Google Scholar 

  40. Khot, V.M., Salunkhe, A.B., Thorat, N.D., Ningthoujam, R.S., Pawar, S.H.: Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia. Dalton Trans. 42, 1249–1258 (2013)

    Article  Google Scholar 

  41. Noh, S.-H., Na, W., Jang, J.-T., Lee, J.-H., Lee, E.J., Moon, S.H., Lim, Y., Shin, J.-S., Cheon, J.: Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett. 12, 3716–3721 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Masoudpanah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahjuee, T., Masoudpanah, S.M. & Mirkazemi, S.M. Thermal Decomposition Synthesis of MgFe2O4 Nanoparticles for Magnetic Hyperthermia. J Supercond Nov Magn 32, 1347–1352 (2019). https://doi.org/10.1007/s10948-018-4834-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4834-1

Keywords

Navigation