AC Susceptibility of BaZrO3 Nanoparticles Added YBa2Cu3O7−δ Superconductor Prepared via Coprecipitation Method

  • Nurhidayah Mohd Hapipi
  • Soo Kien ChenEmail author
  • Abdul Halim Shaari
  • Mohd Mustafa Awang Kechik
  • Kar Ban Tan
  • Kean Pah Lim
  • Oon Jew Lee
Original Paper


In this work, magnetic properties of polycrystalline samples YBa2Cu3O7−δ added with x mol.% of BaZrO3 (BZO) nanoparticles (x = 0.0, 1.0, 2.0, 3.0, 5.0, and 7.0) were studied by AC susceptibility (ACS) measurement. The samples were prepared using coprecipitation (COP) method. X-ray diffraction (XRD) results showed that all the samples were composed of Y-123 as the major phase and Y-211 as the secondary phase. XRD peak of BZO was also observed in the samples added with BZO nanoparticles. The intensity of the peak became higher with increasing amount of BZO addition indicating the presence of increased amount of the unreacted nanoparticles in the samples. The refined lattice parameters indicated that all the samples have an orthorhombic crystal structure without the occurrence of orthorhombic-tetragonal phase transformation. Scanning electron microscopy (SEM) images showed that the samples have randomly distributed grains with irregular shape. The average grain size increased from 0.30 μ m for the pure sample to 0.50 μ m for the BZO addition of 7.0 mol.%. ACS measurement showed a slight decrease of onset critical temperature, Tc−onset (< 1 K) with BZO addition. Both phase lock-in temperature, Tcj, and coupling peak temperature, Tp, remained relatively unchanged for BZO addition up to 3.0 mol.%. Based on the Bean critical state model, the calculated intergranular critical current density, Jcm, for the pure sample is 1.88 A/cm2 at Tp = 84.8 K. For the sample added with 7.0 mol.% of BZO, Jcm at Tp = 83.6 K is 1.95 A/cm2.


YBa2Cu3O7−δ BaZrO3 Coprecipitation Superconductivity AC susceptibility 


Funding Information

This work was financially supported by the Universiti Putra Malaysia through the Putra-Grant (Vote no.: 9552300). N. M. Hapipi would like to acknowledge financial support from the Ministry of Education Malaysia through the MyMaster scholarship and Universiti Putra Malaysia under the Graduate Research Fellowship (GRF).


  1. 1.
    Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Q., Chu, C.W.: Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58, 908–910 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    Cyrot, M., Pavuna, D.: Introduction to Superconductivity and Materials World Scientific Publishing Co. Pte. Ltd. Singapore (1992)Google Scholar
  3. 3.
    Ciontea, L., Celentano, G., Augieri, A., Ristoiu, T., Suciu, R., Gabor, M.S., Rufoloni, A., Vannozzi, A., Galluzzi, V., Petrisor, T.: Chemically processed BaZrO3 nanopowders as artificial pinning centres. J. Phys.: Conf. Ser. 97, 012289 (2008)Google Scholar
  4. 4.
    Strickland, N.M., Long, N.J., Talantsev, E.F., Hoefakker, P., Xia, J., Rupich, M.W., Kodenkandath, T., Zhang, W., Li, X., Huang, Y.: Enhanced flux pinning by BaZrO3 nanoparticles in metal-organic deposited YBCO second-generation HTS wire. Phys. C 468, 183–189 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Jin, L.H., Zhang, S.N., Yu, Z.M., Li, C.S., Feng, J.Q., Sulpice, A., Wang, Y., Zhang, P.X.: Influences of BaZrO3 particles on the microstructure and flux pinning of YBCO film prepared by using modified TFA-MOD approach. Mater. Chem. Phys. 149–150, 188–192 (2015)CrossRefGoogle Scholar
  6. 6.
    Aytug, T., Paranthaman, M., Specht, E.D., Zhang, Y., Kim, K., Zuev, Y.L., Cantoni, C., Goyal, A., Christen, D.K., Maroni, V.A., Chen, Y., Selvamanickam, V.: Enhanced flux pinning in MOCVD-YBCO films through Zr additions: systematic feasibility studies. Supercond. Sci. Technol. 23, 014005 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Moutalbi, N., Ouerghi, A., Djurado, E., Noudem, J.G., M’Chirgui, A.: Vortex pinning in bulk-processed Y-Ba-Cu-O with ZrO2 nano-particles: optimum pinning center size. Phys. C 471, 97–103 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Fa-Zhu, D., Hong-Wei, G., Teng, Z., Hong-Yan, W., Fei, Q., Qing-Quan, Q., Shao-Tao, D., Xing-Yu, P.: Strong flux pinning enhancement in YBa2Cu3O7x films by embedded BaZrO3 and BaTiO3 nanoparticles. Chin. Phys. B 077401, 22 (2013)Google Scholar
  9. 9.
    Traito, K., Safonchik, M., Peurla, M., Huhtinen, H., Paturi, P., Shakhov, M. A., Stepanov, Y. P., Laiho, R.: Anisotropic pinning defects in BaZrO3-doped YBa2Cu3O6 + x films in high magnetic fields. Phys. C 468, 889–893 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Moutalibi, N., M’chirgui, A.: Embedding of insulating nano-inclusions in y-123 superconductor as pinning centers: the influence of size. Phys. C 469, 95–101 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Paulose, K., Koshy, J., Damodaran, A.D.: Superconductivity in YBa2Cu3O7d-ZrO2 systems. Supercond. Sci. Technol. 4, 98–101 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    Awano, M., Fujishiro, Y., Moon, J., Takagi, H., Rybchenko, S., Bredikhin, S.: Microstructure control of an oxide superconductor on interaction of pinning centers and growing crystal surface. Phys. C 341–348, 2017–2018 (2000)CrossRefGoogle Scholar
  13. 13.
    Jha, A.K., Khare, N.: Investigation of flux pinning properties of YBCO:BaZr3 composite superconductor from temperature dependent magnetization studies. J. Magn. Magn. Mater. 322, 2653–2657 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Ochsenkuhn-Petropoulou, M., Argyropoulou, R., Tarantilis, P., Kokkinos, E., Ochsenkuhn, K. M., Parissakis, G.: Comparison of the oxalate co-precipitation and the solid state reaction methods for the production of high temperature superconducting powders and coatings. J. Mater. Process. Technol. 127, 122–128 (2002)CrossRefGoogle Scholar
  15. 15.
    Tranquada, J.M., Heald, S.M., Moodenbaugh, A.R., Xu, Y.: Mixed valency, hole concentration, and T c in YBa2Cu3O6 + x. Phys. Rev. B 38, 8893–8899 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    Mote, V.D., Purushotham, Y., Dole, B. N.: Williamson-hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6, 6 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Luo, Y.Y., Wu, Y.C., Xiong, X.M., Li, Q.Y., Gawalek, W., He, Z. H.: Effects of precursors with fine BaZrO3 inclusions on the growth and microstructure of textured YBCO. J. Supercond. Nove. Magn. 13, 575–581 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    Nikolo, M.: Superconductivity: a guide to alternating current susceptibility measurements and alternating current susceptometer design. Am. J. Phys. 63, 57–65 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    MacManus-Driscoll, J.L., Foltyn, S.R., Jia, Q.X., Wang, H., Serquis, A., Civale, L., Maiorov, B., Hawley, M.E., Maley, M.P., Peterson, D.E.: Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7x + BaZrO3. Nat. Mater. 3, 439–443 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Kameli, P., Salamati, H., Abdolhosseini, I.: AC susceptibility study of Bi1.66Pb0.34Sr2Ca2x MgxCu3Oy (x = 0, 0.2 and 0.4) superconductor systems. J. Alloys Compd. 458, 61–65 (2008)CrossRefGoogle Scholar
  21. 21.
    Goldfarb, R.B., Lelental, M., Thompson, C.A. In: Francavilla, T. L., Hein, R. A., Liebenberg, D. (eds.) : Alternating-Field Susceptometry and Magnetic Susceptibility of Superconductors, pp 49–80. Plenum, New York (1991)Google Scholar
  22. 22.
    Rani, P., Jha, R., Awana, V.P.S.: AC susceptibility study of superconducting YBa2Cu3O7: Agx bulk composites (x = 0.0 – 0.20): The role of intra and intergranular coupling. J. Supercond. Novel Magn. 26, 2347–2352 (2013)CrossRefGoogle Scholar
  23. 23.
    Deac, I.G., Burzo, E., Pop, A.V., Pop, V., Tetean, R., Kovacs, D., Borodi, G.: Intergranular properties of (Y1xy ZrxCay)Ba2Cu3O7δ compounds. Int. J. Mod. Phys. B 13, 1645–1654 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    Sbarciog, C., Redac, R.T., Deac, I.G., Pop, I.: Intergranular properties of Zr-substituted Y123 compounds. Mod. Phys. Lett. B 20, 1191–1198 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Ambegaokar, V., Baratoff, A.: Tunneling between superconductors. Phys. Rev. Lett. 10, 486–489 (1963)ADSCrossRefGoogle Scholar
  26. 26.
    Bean, C.P.: Magnetization of hard superconductors. Phys. Rev. Lett. 8, 250–253 (1962)ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    Karaca, I., Celebi, S., Varilci, A., Malik, A. I.: Effect of Ag2O addition on the intergranular properties of the superconducting Bi–(Pb)–Sr–Ca–Cu–O system. Supercond. Sci. Technol. 16, 100–104 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    Kameli, P., Salamati, H., Eslami, M.: The effect of sintering temperature on the intergranular properties of Bi2223 superconductors. Solid State Commun. 137, 30–35 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nurhidayah Mohd Hapipi
    • 1
  • Soo Kien Chen
    • 1
    • 2
    Email author
  • Abdul Halim Shaari
    • 1
    • 2
  • Mohd Mustafa Awang Kechik
    • 1
  • Kar Ban Tan
    • 3
  • Kean Pah Lim
    • 1
  • Oon Jew Lee
    • 4
  1. 1.Department of Physics, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Institute of Advanced Technology (ITMA)Universiti Putra MalaysiaSerdangMalaysia
  3. 3.Department of Chemistry, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.School of Fundamental ScienceUniversiti Malaysia TerengganuKuala TerengganuMalaysia

Personalised recommendations