Advertisement

Customized MgB2 Superconducting Wire Toward Practical Applications at Sam Dong in Korea

  • Jun Hyuk Choi
  • Dong Gun Lee
  • Ju Heum Jeon
  • Ee Joo Lee
  • Minoru MaedaEmail author
  • Seyong ChoiEmail author
Original Paper
  • 80 Downloads

Abstract

MgB2 superconducting wire from Sam Dong Co., Ltd. in Korea is suitable for various applications, including medical resonance imaging, fault current limiters, power cables, and transformers. So far, issues related to the wire production cost, current-carrying capacity, and conductor length (kilometers) are very important for further commercialization. Since 2014, our intensive research efforts have led to notable progress. Herein, we summarize and discuss our advanced research for achieving high-performance, scalable, and cost-effective MgB2 wires at Sam Dong. Based on our accumulated technical know-how, we will continue to fabricate more competitive and efficient MgB2 superconducting wires that will be suitable for the customer’s purposes.

Keywords

MgB2 wire Conductor design Conductor fabrication Scalable production Kilometer-length superconducting wire Critical current density 

Notes

Acknowledgements

The authors express their gratitude to Prof. Jung Ho Kim and Dr. Tania Silver, University of Wollongong, Australia, for fruitful discussion and critical reading of the manuscript. The authors also express their gratitude to the Sam Dong Co., Ltd., Korea, for the support.

Funding information

This work was supported by the Technology Innovation Program or Industrial Strategic Technology Development Program (20002088, Scalable integration of MgB2 superconducting wire towards cost effectiveness and industrial competitiveness) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea). This study was also supported by 2017 Research Grant from Kangwon National University.

References

  1. 1.
    Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Kim, J.H., Oh, S., Kumakura, H., Matsumoto, A., Heo, Y.U., Song, K.S., Kang, Y.M., Maeda, M., Rindfleisch, M., Tomsic, M., Choi, S., Dou, S.X.: Tailored materials for high performance MgB2 wire. Adv. Mater. 23, 4942–4946 (2011)CrossRefGoogle Scholar
  3. 3.
    Patel, D., Hossain, M.S.A., Motaman, A., Barua, S., Shahabuddin, M., Kim, J.H.: Rational design of MgB2 conductors toward practical applications. Cryogenics 63, 60–165 (2014)CrossRefGoogle Scholar
  4. 4.
    Iwasa, Y.: HTS and NMR/MRI magnets: unique features, opportunities, and challenges. Phys. C 445-448, 1088–1094 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Lakrimi, M., Thomas, A.M., Hutton, G., Kruip, M., Slade, R., Davis, P., Johnstone, A.J., Longfield, M.J., Blakes, H., Calvert, S., Smith, M., Marshall, C.A: The principles and evolution of magnetic resonance imaging. J. Phys.: Conf. Ser. 286, 012016 (2011)Google Scholar
  6. 6.
    Cosmus, T.C., Paizh, M.: Advances in whole-body MRI magnets. IEEE Trans. Appl. Supercond. 21, 2104–2109 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Parizh, M., Lvovsky, Y., Sumption, M.: Conductors for commercial MRI magnets beyond NbTi: requirements and challenges. Supercond. Sci. Technol. 30, 014007 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Patel, D., Hossain, M.S.A., Qiu, W., Jie, H., Yamauchi, Y., Maeda, M., Tomsic, M., Choi, S., Kim, J.H.: Solid cryogen: a cooling system for future MgB2 MRI magnet. Sci. Rep. 7, 43444 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Ballarino, A.: Development of superconducting links for the large Hadron Collider machine. Supercond. Sci. Technol. 27, 044024 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Ballarino, A., Bruzek, C.E., Dittmar, N., Giannelli, S., Goldacker, W., Grasso, G., Grilli, F., Haberstroh, C., Hole, S., Lesur, F., Marian, A., Martiez-Val, J.M., Martini, L., Rubbia, C., Salmieri, D., Schmidt, F., Tropeano, M.: The BEST PATHS project on MgB2 superconducting cables for very high power transmission. IEEE Trans. Appl. Supercond. 26, 5401705 (2016)CrossRefGoogle Scholar
  11. 11.
    Hamajima, T., Amata, H., Iwasaki, T., Atomura, N., Tsuda, M., Miyagi, D., Shintomi, T., Makida, Y., Takao, T., Munakata, K., Kajiwara, M.: Application of SMES and fuel cell system combined with liquid hydrogen vehicle station to renewable energy control. IEEE Trans. Appl. Supercond. 22, 5701704 (2012)CrossRefGoogle Scholar
  12. 12.
    Marino, I., Pujana, A., Sarmiento, G., Sanz, S., Merino, J.M., Tropeano, M., Sun, J., Canosa, T.: Lightweight MgB2 superconducting 10 MW wind generator. Supercond. Sci. Technol. 29, 024005 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Hishinum, Y., Kikuchi, A., Shimada, Y., Kashiwai, T., Hata, S., Yamada, S., Muroga, T., Sagara, A.: Development of MgB2 superconducting wire for the low activation superconducting magnet system operated around core D-T plasma. Fusion Eng. Des. 98-99, 1076–1080 (2015)CrossRefGoogle Scholar
  14. 14.
    Wilson, M.N.: Superconducting Magnets. Clarendon Press, Oxford (1983)Google Scholar
  15. 15.
    Glowacki, B.A., Majoros, M., Vickers, M., Evetts, J.E., Shi, Y., McDougall, I.: Superconductivity of powder-in-tube MgB2 wires. Supercond. Sci. Technol. 14, 193–199 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Giunchi, G., Ceresara, S., Ripamonti, G., Zenobio, A.D., Rossi, S., Chiarelli, S., Spadoni, M., Wesche, R., Bruzzone, P.L.: High performance new MgB2 superconducting hollow wires. Supercond. Sci. Technol. 16, 285–291 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Flukiger, R., Suo, H.L., Musolino, N., Beneduce, C., Toulemonde, P., Lezza, P.: Superconducting properties of MgB2 tapes and wires. Phys. C 385, 286–305 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Hermann, M., Haessler, W., Rodig, C., Gruner, W., Holzapfel, B., Schultz, L.: Touching the properties of NbTi by carbon doped tapes with mechanically alloyed MgB2. Appl. Phys. Lett. 91, 082507 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Hur, J.M., Togano, K., Matsumoto, A., Kumakura, H., Wada, H., Kimura, K.: Fabrication of high-performance MgB2 wires by an internal Mg diffusion process. Supercond. Sci. Technol. 21, 032001 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Li, G.Z., Sumption, M.D., Susner, M.A., Yang, Y., Reddy, K.M., Rindfleisch, M., Tomsic, M., Thong, C.J., Collings, E.W.: The critical current density of advanced internal-Mg-diffusion-processed MgB2 wires. Supercond. Sci. Technol. 25, 115023 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Maeda, M., Uchiyama, D., Hossain, M.S.A., Ma, Z, Shahabuddin, M., Kim, J.H.: Control of core structure in MgB2 wire through tailoring boron powder. J. Alloys Compd. 636, 29–33 (2015)CrossRefGoogle Scholar
  22. 22.
    Bertora, L.: MRI magnets based on MgB2. In: Flukiger, R (ed.) MgB2 Superconducting Wires: Basics and Applications, pp 485–536. World Scientific, Hackensack (2016)Google Scholar
  23. 23.
    Kim, J.H., Oh, S., Heo, Y. -U., Hata, S., Kumakura, H., Matsumoto, A., Mitsuhara, M., Choi, S., Shimada, Y., Maeda, M., MacManus-Driscoll, J.L., Dou, S.X.: Microscopic role of carbon on MgB2 wire for critical current density comparable to NbTi. NPG Asia Mater. 4, E3 (2012)CrossRefGoogle Scholar
  24. 24.
    Maeda, M., Kim, J.H., Heo, Y. -U., Kwon, S.K., Kumakura, H., Choi, S., Nakayama, Y., Takano, Y., Dou, S.X.: Superior MgB2 superconducting wire performance through oxygen-free pyrene additive. Appl. Phys. Express 5, 013101 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Kim, J.H., Choi, S.: Carbon doping induced imperfections on MgB2 superconducting wire. J. Anal. Sci. Technol. 6, 11 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Chen, S.K., Maeda, M., Yamamoto, A., Dou, S.X.: Chemically and mechanically engineered flux pinning for enhanced electromagnetic properties of MgB2. In: Crisan, A (ed.) Vortices and Nanostructured Superconductors, pp 81–108. Springer, Cham (2017)Google Scholar
  27. 27.
    Patel, D., Hossain, M.S.A., See, K.W., Qiu, W., Kobayashi, H., Ma, Z., Kim, S.J., Hong, J., Park, J.Y., Choi, S., Maeda, M., Shahabuddin, M., Rindfleisch, M., Tomsic, M., Dou, S., Kim, J.H.: Evaluation of persistent-mode operation in a superconducting MgB2 coil in solid nitrogen. Supercond. Sci. Technol. 29, 04LT02 (2016)CrossRefGoogle Scholar
  28. 28.
    Iwasa, Y.: Towards liquid-helium-free, persistent-mode MgB2 MRI magnets: FBML experience. Supercond. Sci. Technol. 30, 053001 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    Hossain, M.S.A., Senatore, C., Rindfleisch, M., Flukiger, R.: Improvement of J c by cold high pressure densification of binary, 18-filament in situ MgB2 wires. Supercond. Sci. Technol. 24, 075013 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    Li, G., Zwayer, J.B., Kovacs, C.J., Susner, M.A., Sumption, M.D., Rindfleisch, M.A., Thong, C.J., Tomsic, M., Collings, E.W.: Transport critical current densities and n-values of multifilamentary MgB2 wires at various temperatures and magnetic fields. IEEE Trans. Appl. Supercond. 24, 6200105 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Daejeon R&D Center, Sam Dong Co., Ltd.DaejeonRepublic of Korea
  2. 2.Department of Electrical Engineering and Research Institute for EnergyKangwon National UniversitySamcheokRepublic of Korea

Personalised recommendations