The Effect of Termination Resistances on the Quench and Mechanical Response in High-Temperature Superconducting Cables

  • Weiwei Zhang
  • Xingxing Wan
  • Huadong YongEmail author
  • Youhe Zhou
Original Paper


The termination resistance can lead to the nonuniform distributions of current in the superconducting cable, which has an obvious effect on the quench characteristics. In order to study the quench in the infinitely long stacked-tape YBCO cable, a simplified two-dimensional (2D) model is established. By considering the termination resistances, the coupled heat conduction equation and the Maxwell’s equations are solved to calculate the evolution of current and temperature with time, where E-J constitutive law and Ohm’s law are used for the superconducting layer and other layers in the tape. Then, a 2D solid mechanical model is built to analyse the strain and stress during the quench. When the pulsed heat source is applied on the cable, it can be found that the termination resistance will affect the sequence of the quench of tapes in the cable. Meanwhile, the sequence and time of the quench are influenced by transport current and the locations of heat source. The distribution of the Von Mises stress is similar to the temperature, and the termination resistances have little effect on the mechanical behaviors. The strain rate has an inflection point when the temperature is more than the critical temperature.


Termination resistance Temperature Quench Strain rate 


Funding Information

The authors acknowledge the supports from the National Natural Science Foundation of China (Nos. 11327802 and 11472120), 111 Project (B14044) and the Fundamental Research Funds for the Central Universities (lzujbky-2017-k18).


  1. 1.
    Yamada, Y., Obst, B., Flukiger, R.: Supercond. Sci. Technol. 4, 165–171 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    Malozemoff, A., Carter, W., Fleshler, S., Fritzemeier, L., Li, Q., Masur, L., Miles, P., Parker, D., Parrella, R., Podtburg, E.: IEEE Trans. Appl. Supercond. 9, 2469–2473 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    Hazelton, D., Selvamanickam, V.: Proc. IEEE 97, 1831–1836 (2009)CrossRefGoogle Scholar
  4. 4.
    Rupich, M.W., Li, X., Thieme, C., Sathyamurthy, S., Fleshler, S., Tucker, D., Thompson, E., Schreiber, J., Lynch, J., Buczek, D.: Supercond. Sci. Technol. 23, 014015 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Shiohara, Y., Fujiwara, N., Hayashi, H., Nagaya, S., Izumi, T., Yoshizumi, M.: Phys. C 469, 863–867 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Fujiwara, N., Hayashi, H., Nagaya, S., Shiohara, Y.: Phys. C 470, 980–985 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Tixador, P.: Phys. C 470, 971–979 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Song, H., Brownsey, P., Zhang, Y., Waterman, J., Fukushima, T., Hazelton, D.: IEEE Trans. Appl. Supercond. 23, 4600806 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Jiang, Z., Amemiya, N., Kakimoto, K., Iijima, Y., Saitoh, T., Shiohara, Y.: Supercond. Sci. Technol. 21, 015020 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Ogawa, J., Fukui, S., Oka, T., Sato, T., Shinkai, K., Koyama, T., Ito, T.: IEEE Trans. Appl. Supercond. 20, 1300–1303 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    He, A., Xue, C., Yong, H., Zhou, Y.: Supercond. Sci. Technol. 27, 025004 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Iwasa, Y.: Springer Science and Business Media (2009)Google Scholar
  13. 13.
    Schwartz, J., Effio, T., Liu, X., Le, Q.V., Mbaruku, A.L., Schneider-Muntau, H.J., Shen, T., Song, H., Trociewitz, U.P., Wang, X.: IEEE Trans. Appl. Supercond. 18, 70–81 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Liu, W., Yong, H., Zhou, Y.: AIP Adv. 6, 095023 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Roy, F., Therasse, M., Dutoit, B., Sirois, F., Antognazza, L., Decroux, M.: IEEE Trans. Appl. Supercond. 19, 2496–2499 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Chan, W.-K., Masson, P.J., Luongo, C.A., Schwartz, J.: IEEE Trans. Appl. Supercond. 19, 2490–2495 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Chan, W.K., Masson, P.J., Luongo, C., Schwartz, J.: IEEE Trans. Appl. Supercond. 20, 2370–23780 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Chan, W.K., Schwartz, J.: IEEE Trans. Appl. Supercond. 21, 3628–3634 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Wang, X., Trociewitz, U., Schwartz, J.: J. Appl. Phys. 101, 053904 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Levin, G., Novak, K., Barnes, P.: Supercond. Sci. Technol. 23, 014021 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Levin, G., Jones, W., Novak, K., Barnes, P.: Supercond. Sci. Technol. 24, 035015 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Zhang, M., Matsuda, K., Coombs, T.: J. Appl. Phys. 112, 043912 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Grilli, F., Stavrev, S., Dutoit, B., Spreafico, S., Tebano, R., Gömöry, F., Frolek, L., Šouc, J.: Phys. C 401, 176–181 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Zermeno, V., Krüger, P., Takayasu, M., Grilli, F.: Supercond. Sci. Technol. 27, 124013 (2014)ADSCrossRefGoogle Scholar
  25. 25.
  26. 26.
    Brambilla, R., Grilli, F., Martini, L.: Supercond. Sci. Technol. 20, 16–24 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Hong, Z., Campbell, A., Coombs, T.: Supercond. Sci. Technol. 19, 1246–1252 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    Rhyner, J.: Phys. C 212, 292–300 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    Wan, X.X., Huang, C.G., Yong, H.D., Zhou, Y.H.: AIP Adv. 5, 117139 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Grasso, G., Marti, F., Huang, Y., Perin, A., Flükiger, R.: Phys. C 281, 271–277 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    Duron, J., Grilli, F., Dutoit, B., Stavrev, S.: Phys. C 401, 231–235 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    Dizon, J.R.C., Gorospe, A.B., Shin, H.-S.: Supercond. Sci. Technol. 27, 055023 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Shin, H.S., Dedicatoria, M.J.: Supercond. Sci. Technol. 25, 054013 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    COMSOL: (n.d.)
  35. 35.
    Liu, D., Zhang, W., Yong, H., Zhou, Y.H.: Supercond. Sci. Technol. (2018)
  36. 36.
    Tong, Y., Guan, M., Wang, X.: Supercond. Sci. Technol. 30, 045002 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Weiwei Zhang
    • 1
    • 2
  • Xingxing Wan
    • 3
  • Huadong Yong
    • 1
    • 2
    Email author
  • Youhe Zhou
    • 1
    • 2
  1. 1.Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education of ChinaLanzhou UniversityLanzhouPeople’s Republic of China
  2. 2.Department of Mechanics and Engineering Sciences, College of Civil Engineering and MechanicsLanzhou UniversityLanzhouPeople’s Republic of China
  3. 3.Department of Mechanical and Electrical EngineeringXinjiang University Institute of Science and TechnologyAkesuPeople’s Republic of China

Personalised recommendations