Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 4, pp 1099–1104 | Cite as

In-Plane Anisotropy Effect to the Spin-Wave Gap in Ultrathin Ferromagnetic Films at Finite Temperatures

  • B. KaplanEmail author
  • R. Kaplan
Original Paper
  • 69 Downloads

Abstract

In this paper, we investigate the calculated thickness- and temperature-dependent magnetization given in terms of the spin-wave gap alone for two-dimensional ultrathin ferromagnetic films with anisotropy and Zeeman energy sufficiently large to dominate over the dipolar interaction. The spin-wave gap was calculated for a magnetic field which is perpendicular to the plane. The calculated equations present a nonzero spin-wave gap at zero magnetic field which is strongly affected by anisotropies. The temperature-dependent magnetization strongly increases with decreasing thickness of the insulating spacer layer at the saturation field and at room temperature. We reported that the in-plane anisotropy strongly depends on the insulating spacer layer thickness and saturation field and overcomes the fourfold anisotropy in the spacer layers with thickness of below 0.8 nm. The results were also discussed in connection with experimental data given in Co0.9Fe0.1/MgO/C0.9Fe0.1 films.

Keywords

Magnetic anisotropy Spin-wave gap Temperature- and thickness-dependent magnetization 

References

  1. 1.
    Carcia, P.F., et al.: Phys. Rev. Lett. 47, 178 (1985)Google Scholar
  2. 2.
    Carcia, P.F.: J. Appl. Phys. 63, 5066 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    Bochi, G., et al.: Phys. Rev. Lett. 75, 1839 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    Allenspach, R., et al.: Phys. Rev. Lett. 65, 3344 (1990)ADSCrossRefGoogle Scholar
  5. 5.
    Allenspach, R., Bischof, A.: Phys. Rev. Lett. 69, 3385 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    Fowler, D.E., Barth, J.V.: Phys. Rev. B 53, 5563 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    Hamada, S., et al.: J. Magn. Magn. Mater. 496, 198–199 (1999)Google Scholar
  8. 8.
    Chafai, K., et al.: J Supercond Nov Magn 25, 117 (2012)CrossRefGoogle Scholar
  9. 9.
    Quispe-Marcatoma, J., et al.: Thin Solid Films 568, 117 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Song, G., et al.: Solid State Commun. 211, 47 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Topkaya, R.: J. Supercond. Nov. Magn. 30, 1275 (2017)CrossRefGoogle Scholar
  12. 12.
    Salhi, H., et al.: J. Magn. Magn. Mater. 428, 320 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Yang, M., et al.: J. Magn. Magn. Mater. 460, 6 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    Lasek, K., et al.: J. Magn. Magn. Mater. 444, 326 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Kaplan, B., Kaplan, R.: J. Supercond. Nov. Magn. 31, 1779 (2018)Google Scholar
  16. 16.
    Bruno, P.: Phys. Rev. B 43, 6015 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    Bland, J.A.C., et al.: J. Magn. Magn. Mater. 113, 173 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    Tacchi, S., et al.: Surf. Sci. 600, 4147 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Römer, F.M., et al.: J. Magn. Magn. Mater. 321, 2232 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Klein, M.J., Smith, R.S.: Phys. Rev. 81, 378 (1951)ADSCrossRefGoogle Scholar
  21. 21.
    Pescia, D., et al.: Phys. Rev. Lett. 58, 2126 (1987)ADSCrossRefGoogle Scholar
  22. 22.
    Przybylski, M., Gradmann, U.: Phys. Rev. Lett. 59, 1152 (1987)ADSCrossRefGoogle Scholar
  23. 23.
    Bland, J.A.C., et al.: Phys. Rev. B 51, 258 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of EducationUniversity of MersinMersinTurkey

Personalised recommendations