Skip to main content
Log in

Theoretical Study of Mechanical Stability and Physical Properties of Co2V1−xZrxGa

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The mechanical stability and physical properties of Co2V1−xZrxGa (x = 0, 0.25, 0.50, 0.75, 1) have been predicted by using ab initio calculations based on density functional theory. The exchange-correlation potentials are treated within the generalized gradient approximation-Perdew-Burke and Ernzerhhof (GGA-PBE) and Hubbard coefficient (GGA+U). The investigated minimum lattice parameter of Co2VGa is 5.8030 Å, which is in excellent agreement with available experimental and theoretical data and for Co2V1−xZrxGa (x = 0.25, 0.50, 0.75, 1) are 5.9026, 5.9625, 6.0060 and 6.0021 Å, respectively, which are predicted for the very first time. The total magnetic moments decrease with increasing concentration of x in Co2V1−xZrxGa, in agreement with the Slater-Pauling rule. Band structure and density of states calculations show that the minority spin channel exhibits band gaps of 0.43, 0.46, 0.52, 0.54 and 1.01 eV for GGA+U scheme around the Fermi level confirming that all the studied composites are half-metallic in nature. In this study, we also studied the elastic constant and it is established that all the materials are mechanically stable and ductile in nature. The Co2VGa is stiffer than other materials and all the studied composites have anisotropic behaviour. Moreover, by using a quasi-harmonic Debye model and calculated elastic constant, the Debye temperature and temperature-dependent constant volume heat capacity have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Heusler, F., Verh, D.: DPG 5, 219 (1903)

    Google Scholar 

  2. Felser, C., Fecher, G.H., Balke, B.: Spintronics: a challenge for materials science and solid-state chemistry. Angew Chemie - Int. Ed. 46, 668–699 (2007). https://doi.org/10.1002/anie.200601815

    Article  Google Scholar 

  3. Kieven, D., Klenk, R., Naghavi, S., et al.: I-II-V half-Heusler compounds for optoelectronics: ab initio calculations, 1–6. https://doi.org/10.1103/PhysRevB.81.075208 (2010)

  4. Wiendlocha, B., Winiarski, M.J., Muras, M., et al. https://doi.org/10.1103/PhysRevB.91.024509 (2015)

  5. Ishikawa, H., Sutou, Y., Omori, T., et al.: Pd – In – Fe shape memory alloy Pd – In – Fe shape memory alloy. 261906. https://doi.org/10.1063/1.2749440 (2017)

  6. Kirievsky, K., Shlimovich, M., Fuks, D., Gelbstein, Y.: An ab initio study of the thermoelectric enhancement potential in nano-grained TiNiSn. Phys. Chem. Phys. 16, 20023–20029 (2014). https://doi.org/10.1039/C4CP02868F

    Article  Google Scholar 

  7. De Groot, R.A., Mueller, F.M., Van Engen, P.G., Buschow, K.H.J.: New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024–2027 (1983). https://doi.org/10.1103/PhysRevLett.50.2024

    Article  ADS  Google Scholar 

  8. Paudel, R., Zhu, J.: Structural, electronic, magnetic, elastic, and thermal properties of Co-based equiatomic quaternary Heusler alloys. J. Magn. Magn. Mater. 453, 10–16 (2018). https://doi.org/10.1016/j.jmmm.2017.12.103

    Article  ADS  Google Scholar 

  9. Chadov, S., Qi, X., Kübler, J., et al.: Tunable multifunctional topological insulators in ternary Heusler compounds. Nat. Mater., 9. https://doi.org/10.1038/NMAT2770 (2010)

  10. Zhang, J., Zhang, X., Wang, Y.: Hf/sb co-doping induced a high thermoelectric performance of ZrNiSn: first-principles calculation. Sci. Rep. 7, 14590 (2017). https://doi.org/10.1038/s41598-017-15205-y

    Article  ADS  Google Scholar 

  11. Paudel, R., Jingchuan, Z.: Theoretical study of structural, magnetic, elastic, phonon, and thermodynamic properties of Heusler alloys Fe2CrX (X = Al, Ga). J. Supercond. Nov. Magn., 1–8. https://doi.org/10.1007/s10948-017-4397-6 (2017)

  12. Seema, K., Kumar, R.: Electronic structure and magnetic properties of quaternary Heusler alloy Co2CrGa1-xGex (x = 0-1). J. Magn. Magn. Mater. 377, 70–76 (2015). https://doi.org/10.1016/j.jmmm.2014.10.076

    Article  ADS  Google Scholar 

  13. Li, S., Takahashi, Y.K., Furubayashi, T., Hono, K.: Enhancement of giant magnetoresistance by L21 ordering in Co2Fe(Ge0.5Ga0.5) Heusler alloy current-perpendicular-to-plane pseudo spin valves. Appl. Phys. Lett. 103, 1–5 (2013). https://doi.org/10.1063/1.4816382

    Google Scholar 

  14. Han, J., Wang, Z., Xu, W., et al.: Investigation of half-metallic ferromagnetism in Heusler compounds co2VZ (Z = Ga, Ge, As, Se). J. Magn. Mater. 442, 80–86 (2017)

    Article  ADS  Google Scholar 

  15. Amari, S., Bouhafs, B.: Electronic, elastic, and magnetic properties of the full-heusler with the 4d transition metal element, co2YSi, Co2ZrSi, and Co2Y0.5Zr0.5Si: a first-principle study. J. Supercond. Nov. Magn. 29, 2311–2317 (2016). https://doi.org/10.1007/s10948-016-3547-6

    Article  Google Scholar 

  16. Rai, D.P., Shankar, A., Khenata, R., et al.: Electronic, optical, and thermoelectric properties of Fe2+xV1-xAl electronic, optical, and thermoelectric properties of Fe2+xV1-x Al. J. Appl. Phys. 7, 45118–45010 (2017)

    Google Scholar 

  17. Payne, M.C., Teter, M.P., Allan, D.xC., et al.: Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod Phys (1992)

  18. Segall, M.D., Lindan, P.J.D., Probert, M.J., et al.: First-principles simulation: ideas, illustrations, and the CASTEP code. J. Phys. Condens. Matter 14, 2717–2744 (2002)

    Article  ADS  Google Scholar 

  19. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  20. Cococcioni, M., de Gironcoli, S.: A linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B, 1–16. https://doi.org/10.1103/PhysRevB.71.035105 (2004)

  21. Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990)

    Article  ADS  Google Scholar 

  22. Fischer, T.H., Almlöf, J.: General methods for geometry and wave function optimization. J. Phys. Chem. 96, 9768–9774 (1992)

    Article  Google Scholar 

  23. Pack, J.D., Monkhorst, H.J.: Special points for Brillouin-zone integrations—a reply. Phys. Rev. B 16, 1748–1749 (1977)

    Article  ADS  Google Scholar 

  24. Murnaghan, F.D.: The compressibility of media under extreme pressures. Proc. Nat’l. Acad Sci. https://doi.org/10.1073/pnas.30.9.244 (1944)

  25. Kanomata, T., Chieda, Y., Endo, K., et al.: Magnetic properties of the half-metallic Heusler alloys Co2VAl and Co2VGa. Phys. Rev. B 82, 144415 (2010). https://doi.org/10.1103/PhysRevB.82.144415

    Article  ADS  Google Scholar 

  26. Ziebeck, K.R.A., Webster, P.J.: A neutron diffraction and magnetization study of Heusler alloys containing Co and Zr, Hf, V or Nb. J. Phys. Chem. Solids 35, 1–7 (1974)

    Article  ADS  Google Scholar 

  27. Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 65, 349–354 (1952). https://doi.org/10.1088/0370-1298/65/5/307

    Article  ADS  Google Scholar 

  28. Fu, H., Li, D., Peng, F., et al.: Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures. Comput. Mater. Sci. 44, 774–778 (2008). https://doi.org/10.1016/j.commatsci.2008.05.026

    Article  Google Scholar 

  29. Pugh, S.F.: XCII. Relations Between the elastic moduli and the plastic properties of polycrystalline pure metals. london, Edinburgh, Dublin Philos. Mag. J. Sci. 45, 823–843 (1954)

    Article  Google Scholar 

  30. Jong, J.-Y., Yan, J., Zhu, J., Kim, C.-J.: Stability and elastic, electronic, and thermodynamic properties of Fe2TiSi1−xSnx compounds. J. Electron Mater. https://doi.org/10.1007/s11664-017-5564-z (2017)

  31. Anisimov, V.I., Aryasetiawan, F., Lichtenstein, A.I.: First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method. J. Phys. Condens. Matter 9, 767–808 (1997). https://doi.org/10.1088/0953-8984/9/4/002

    Article  ADS  Google Scholar 

  32. Rai, D.P., Shankar, A., Sandeep, et al.: A comparative study of a Heusler alloy Co2FeGe using LSDA and LSDA+U. Phys. B Condens. Matter 407, 3689–3693 (2012). https://doi.org/10.1016/j.physb.2012.04.055

    Article  ADS  Google Scholar 

  33. Balke, B., Fecher, G.H., Felser, C.: Structural and magnetic properties of Co2FeAl1−xSix. Appl. Phys. Lett. 90, 242503 (2007). https://doi.org/10.1063/1.2748341

    Article  ADS  Google Scholar 

  34. Abderrahim, B., Ameri, M., Bensaid, D., et al.: Half-metallic magnetism of quaternary heusler compounds Co2FexMn1−xSi (x = 0, 0.5, and 1.0): first-principles calculations. J. Supercond. Nov. Magn. 29, 277–283 (2016). https://doi.org/10.1007/s10948-015-3277-1

    Article  Google Scholar 

  35. Slater, J.C.: The ferromagnetism of nickel. II. Temperature effects. Phys. Rev. 49, 931–937 (1936)

    Article  ADS  Google Scholar 

  36. Pauling, L.: The nature of the interatomic forces in metals. Phys. Rev. 54, 899–904 (1938)

    Article  ADS  MATH  Google Scholar 

  37. Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Slater-Pauling behavior of the half-ferromagnetic full-Heusler alloys, 1–9 (2002)

  38. Ozdogan, K., Sasioglu, E., Galanakis, I.: Slater-pauling behavior in LiMgPdSn-type multifunctional quaternary Heusler materials: half-metallicity, spin-gapless and magnetic semiconductors. J. Appl. Phys., 113 (2013)

  39. Wachter, P., Filzmoser, M., Rebizant, J.: Electronic and elastic properties of the light actinide tellurides. Phys. B Condens. Matter 293, 199–223 (2001). https://doi.org/10.1016/S0921-4526(00)005755

    Article  ADS  Google Scholar 

  40. Anderson, O.L.: A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909–917 (1963)

    Article  ADS  Google Scholar 

  41. Debye, P.: Zur Theorie der spezifischen Wrmen. Ann. Phys. 344, 789–839 (1912). https://doi.org/10.1002/andp.19123441404

    Article  MATH  Google Scholar 

  42. Wang, L., Zhu, X.: First-principles investigations of electronic, magnetic and thermodynamic properties of Heusler alloy Co2Mn1-xTixSn. J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2016.04.065 (2016)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant no. 51401099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Paudel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paudel, R., Zhu, J. Theoretical Study of Mechanical Stability and Physical Properties of Co2V1−xZrxGa. J Supercond Nov Magn 32, 1261–1269 (2019). https://doi.org/10.1007/s10948-018-4773-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4773-x

Keywords

Navigation