Structural Characterization and Magnetic Properties of SrCo2Fe16O27 Hexaferrite Synthesized by Citric Acid Sol-Gel Method

Original Paper
  • 4 Downloads

Abstract

The W -type SrCo2Fe16O27 (SCFO) hexagonal ferrite samples were prepared by the sol-gel method using metal nitrate as raw material, citric acid as complexing agent, and water as solvent. The effects of different sintering temperatures and holding times on the phase composition and morphology properties were explored in detail by using the X-ray diffractometer and field emission scanning electron microscope. The X-ray diffraction, microstructure, and magnetic performance of most optimum sintering temperature and holding time of preparing single-phase SCFO hexagonal ferrite were investigated. The experimental results indicate that the best optimum sintering temperature and holding time of SCFO hexagonal ferrite are 1280 °C and 4 h, respectively. Field emission scanning electron microscopy results indicate that the size of the particles is about 5–10 μ m. The result of magnetic measurement shows that SCFO hexagonal ferrite exhibits the soft magnetic property and the Curie temperature (TC) is ∼ 850 K. Furthermore, by analyzing the Arrott plot, the phase transition near the TC is a secondary phase transition.

Keywords

SCFO hexagonal ferrite X-ray diffraction Citric acid sol-gel method Magnetic properties 

Notes

Funding Information

This work was supported by the National Science Foundation of China (Grant No. 11464007), the National Science Foundation of Guangxi (Grant No. 2017GXNSFAA198373), the Guangxi Key Laboratory of Information Material Foundation (Grant Nos. 171020-Z and 171025-Z), and the Graduate Student Innovation Project of Guilin University of Electronic Technology (Grant No. 2017YJCXB01).

References

  1. 1.
    Sugimoto, M.: Am. J. Ceram. Soc. 82, 269–280 (1999)CrossRefGoogle Scholar
  2. 2.
    Nakamura, T., Hatakeyama, K.: Complex permeability of polycrystalline hexagonal ferrites. IEEE. Trans. Magn. 36, 3415–3417 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Ghasemi, A.: Effects of divalent ion substitution on the microstructure and magnetic properties of SrCo2−x (MnZnCa)x/3Fe16O27, nanoparticles. J. Supercond. Nov. Magn. 29, 1943–1952 (2016)CrossRefGoogle Scholar
  4. 4.
    Smit, J., Wijin, H.P.: Ferrites, p 185. Cleaver-Hume, London (1959)Google Scholar
  5. 5.
    Ahmad, M., Grössinger, R., Kriegisch, M., Kubel, F., Rana, M.: Magnetic and microwave attenuation behavior of Al-substituted Co2W hexaferrites synthesized by sol-gel auto-combustion process. J. Curr. Appl. Phys. 12, 1413–1420 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Mahmood, S.H., Aloqaily, A.N, Maswadeh, Y., Ahmad, A., Ibrahim, B., Mufeed, A., Hassan, J.: Effects of heat treatment on the phase evolution, structural, and magnetic properties of Mo-Zn doped M-type hexaferrites. J. Solid State Phenomena 232, 65–92 (2015)CrossRefGoogle Scholar
  7. 7.
    Rai, G.M., Aen, F., Islam, M.U., Rana, M.: Dielectric and magnetic behavior of BaCd2−xSrxFe16O27 W-type hexagonal ferrites. J. Alloy Compd. 509, 4793–4796 (2011)CrossRefGoogle Scholar
  8. 8.
    Kimura, T.: Magnetoelectric hexaferrites. J. Annu. Rev. Condens. Matter. Phys. 3, 93–110 (2012)CrossRefGoogle Scholar
  9. 9.
    Huang, X., Zhang, J., Wang, H., Yan, S., Wang, L., Zhang, Q.: Er-substituted W-type barium ferrite: preparation and electromagnetic properties. J. Rare. Earth 28, 940–943 (2010)CrossRefGoogle Scholar
  10. 10.
    Tung, M.J., Chen, R., Hsu, C.H., Tseng, T.Y.: A model of non-homogeneous damped electromagnetic wave and heat equation in ferrite materials. J. Magn. Magn. Mater. 239, 402–405 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Wang, J., Zhang, H., Bai, S.X., Chen, K., Zhang, C.: Microwave absorbing properties of rare-earth elements substituted W-type barium ferrite. J. Magn. Magn. Mater. 312, 310–313 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Ahmed, M.A., Okasha, N., Oaf, M., Kershi, R.M.: The role of Mg substitution on the microstructure and magnetic properties of BaCoZn W-type hexagonal ferrites. J. Magn. Magn. Mater. 314, 128–134 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Qiu, J., Liang, L., Gu, M.: Nanocrystalline structure and magnetic properties of barium ferrite particles prepared via glycine as a fuel. J. Mater. Sci. Eng. R 393, 361–365 (2005)CrossRefGoogle Scholar
  14. 14.
    Yutaro, K., Yuji, H., Takashi, H., Taishi, I., Hiroyuki, N., Tsuyoshi, K.: Low-field magnetoelectric effect at room temperature. J. Nat. Mater. 9(10), 797 (2010)CrossRefGoogle Scholar
  15. 15.
    Niu, X., Liu, Y., Li, M., Wu, B., Li, H.: The study of microstructure and magnetic properties of La3+ doped W-type hexagonal ferrites Sr1−xLaxCo2Fe16O27. J. Electron. Mater. 46, 4299–4303 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Ali, A., Grössinger, R., Imran, M., Khan, M.A., Elahi, A., Akhtar, M.N., Mustafa, G., Khan, M.A., Ullah, H., Murtaza, G., Ahmad, M.: Magnetic and high-frequency dielectric parameters of divalent ion-substituted W-type hexagonal ferrites. J. Electron. Mater. 46, 1–8 (2017)CrossRefGoogle Scholar
  17. 17.
    Ahmad, M., Grössinger, R., Kriegisch, M., Kubelc, M.F., Ranaa, U.: Characterization of Sr-substituted W-type hexagonal ferrites synthesized by sol–gel autocombustion method. J. Magn. Magn. Mater. 332(4), 137–145 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringGuilin University of Electronic TechnologyGuilinChina
  2. 2.Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations