Advertisement

The Structural, Electronic, and Magnetic Features of Co2Mn1−xAlxTi (0 ≤ x ≤ 0.6) Heusler Alloys

  • G. Durak YüzüakEmail author
  • E. Yüzüak
  • I. Dinçer
  • Y. Elerman
Original Paper
  • 96 Downloads

Abstract

The structural, electronic, and magnetic features of Co2Mn1−xAlxTi (0 ≤ x ≤ 0.6) Heusler alloys (HAs) have been systematically investigated by experimental techniques (X-ray powder diffraction, scanning electron microscopy, and magnetization measurements) and ab initio theoretical calculations. Whole alloys have cubic structures at room temperature and exhibit ferromagnetic properties. The Curie temperature of Co2Mn1−xAlxTi (x = 0) is approximately 790 K, which is compatible with other studies. By increasing Al content, the temperature dependence of magnetization trials has proved a linear diminishment on Curie temperature and saturation magnetization.

Keywords

Heusler alloys Magnetic features Co2Mn–AlTi Substitution effect Phase transition 

References

  1. 1.
    Felser, C., Hirohata, M.: Heusler Alloys Properties, Growth and Applications. Springer, Berlin (2016)Google Scholar
  2. 2.
    Felser, C., Fecher, G.H., Balke, B.: Spintronics: a challenge for materials science and solid-state chemistry. Angew. Chem. Int. Ed. 46, 668–699 (2007)CrossRefGoogle Scholar
  3. 3.
    Ma, J., Hegde, V.I., Munira, K., Xie, Y., Keshavarz, S., Mildebrath, D.T., Wolverton, C., Ghosh, A.W., Butler, W.H.: Computational investigation of half-Heusler compounds for spintronics applications. Phys. Rev. B 95, 024411 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Sakon, T., Adachi, Y., Kanomata, T.: Magneto-structural properties of Ni2MnGa ferromagnetic shape memory alloy in magnetic fields. Metals 3, 202–224 (2013)CrossRefGoogle Scholar
  5. 5.
    Auge, A., Teichert, N., Meinert, M., Reiss, G., Hütten, A., Yüzüak, E., Dincer, I., Elerman, Y., Ennen, I., Schattschneider, P.: Thickness dependence of the martensitic transformation, magnetism, and magnetoresistance in epitaxial Ni-Mn-Sn ultrathin films. Phys. Rev. B 85, 214118 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Kudrnovský, J., Drchal, V., Turek, I.: Anomalous Hall effect in stoichiometric Heusler alloys with native disorder: a first-principles study. Phys. Rev. B 88, 014422 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Miura, Y., Shirai, M., Nagao, K.: Ab initio study on stability of half-metallic Co-based full-Heusler alloys. J. Appl. Phys. 99, 08J112 (2006)CrossRefGoogle Scholar
  8. 8.
    Zhang, W., Qian, Z., Sui, Y., Liu, Y., Huang, X., Su, W., Zhang, M., Liu, Z., Liu, G., Wu, G.: Transport properties and structural phase transition of the Heusler alloy Co2TiAl synthesized by the melt-spinning technique. Phys. B Condens. Matter 367, 205–209 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Webster, P.J., Ziebeck, K.R.A.: Magnetic and chemical order in Heusler alloys containing cobalt and titanium. J. Phys. Chem. Solid 34, 1647–1654 (1973)ADSCrossRefGoogle Scholar
  10. 10.
    Ishida, S., Akazawa, S., Kubo, Y., Ishida, J.: Band theory of Co2MnSn, Co2TiSn and Co2TiAl. J. Phys. F 12, 1111–1122 (1982)ADSCrossRefGoogle Scholar
  11. 11.
    Mizusaki, S., Ohnishi, T., Ozawa, T.C., Noro, Y., Samata, H., Itou, M., Sakurai, Y., Nagata, Y.: Magnetic and transport properties of Heusler compound Co2TiAl. IEEE Trans. Magn. 47, 2444–2446 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Graf, T., Fecher, G.H., Barth, J., Winterlik, J., Felser, C.: Electronic structure and transport properties of the Heusler compound Co2TiAl. J. Phys. D: Appl. Phys. 42, 054003 (2009)CrossRefGoogle Scholar
  13. 13.
    Mizusaki, S., Ohnishi, T., Ozawa, T.C., Noro, Y., Samata, H., Itou, M., Sakurai, Y., Nagata, Y.: Magnetic and transport properties of Heusler compound Co2TiAl. IEEE Trans. Magn. 47, 2444–2446 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Sanvito, S., Oses, C., Xue, J., Tiwari, A., Zic, M., Archer, T., Tozman, P., Venkatesan, M., Coey, M., Curtarolo, S.: Accelerated discovery of new magnets in the Heusler alloy family. Sci. Adv. 3, e1602241 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Sharma, V.K., Chattopadhyay, M.K., Khandelwal, A., Roy, S.B.: Martensitic transition near room temperature and the temperature- and magnetic-field-induced multifunctional properties of Ni49CuMn34In16 alloy. Phys. Rev. B 82, 172411 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Sokolovskiy, V.V., Buchelnikov, V.D., Taskaev, S.V., Khovaylo, V.V., Ogura, M., Entel, P.: Quaternary Ni–Mn–In–Y Heusler alloys: a way to achieve materials with better magnetocaloric properties. J. Phys. D. Appl. Phys. 46, 305003 (2010)CrossRefGoogle Scholar
  17. 17.
    Mudryk, Y., Paudyal, D., Liu, J., Pecharsky, Vitalij K.: Enhancing magnetic functionality with scandium: breaking stereotypes in the design of rare earth materials. Chem. Mater. 29, 3962–3970 (2017)CrossRefGoogle Scholar
  18. 18.
    Kaya, M., Çiçek, M. M., Dinçer, İ., Elerman, Y.: Magnetic and magnetocaloric properties of Ni43Mn46−xAlxIn11 (x = 0, 0.5 and 1.0). JMMM 442, 429–434 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Giannozzi, P., Baroni, S., Bonini, N., et al.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009)Google Scholar
  20. 20.
    Ebert, H.: Fully relativistic band structure calculations for magnetic solids—formalism and application. In: Electronic Structure and Physical Properties of Solids. Lecture Notes in Physics, vol. 535, pp. 191–246 (2000)Google Scholar
  21. 21.
    Hem Chandra, K., Felser, C., Seshadri, R.: Covalent bonding and the nature of band gaps in some half-Heusler compounds. J. Phys. D Appl. Phys. 39(5), 776–785 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Zhang, Y.J., Li, G.J., Liu, E.K., Chen, J.L., Wang, W.H., Wu, G.H.: Ferromagnetic structures in Mn2CoGa and Mn2CoAl doped by Co, Cu, V, and Ti. J. Appl. Phys. 113, 123901 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Berri, S., Ibrir, M., Maouche, D., Attallah, M.: Robust half-metallic ferromagnet of quaternary Heusler compounds ZrCoTiZ (Z = Si, Ge, Ga and Al). Comput. Condens. Matter 1, 26–31 (2014)CrossRefGoogle Scholar
  24. 24.
    Wang, K., Dong, S., Xu, Z., Huang, Y.: Crystallization and magnetic properties in amorphous Co2MnSi alloy films. Mater. Lett. 180, 140–143 (2016)CrossRefGoogle Scholar
  25. 25.
    Saha, R., Srinivas, V., Chandrasekhar Rao, T.V.: Evolution of ferromagnetic like order in Fe2 V 1−xCrxAl Heusler alloys. Phys. Rev. B 79(17), 174423 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • G. Durak Yüzüak
    • 1
    Email author
  • E. Yüzüak
    • 2
  • I. Dinçer
    • 1
  • Y. Elerman
    • 1
  1. 1.Department of Engineering Physics, Faculty of EngineeringAnkara UniversityBeşevlerTurkey
  2. 2.Department of Material Science and Nanotechnology Engineering, Faculty of EngineeringRecep Tayyip Erdoğan UniversityRizeTurkey

Personalised recommendations