Skip to main content
Log in

Magnetic Behavior of Superconductor 2H-NbSe2 Intercalated with Iron: First Principle Study

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We investigated the structural, electronic and magnetic properties of iron-intercalated niobium selinium, \(Fe_{x}NbSe_{2}\) for \(x = 0\) and 0.25, from first principle calculations. The tendency towards the localization in superconductors criterion which has been extracted from our results placed the \(NbSe_{2}\) compound in vicinity of Fe-based superconductors. The DFT plus on-site coulomb repulsion U (DFT+U) and the exact exchange for correlated electrons (DFT+EECE)-based hybrid functional were used including the spin-orbit coupling (SOC) to understand the role of correlation and SOC effects in this type of systems. The calculation predicts the correct antiferromagnetic (AF) ground state, from both the generalized gradient approximation (GGA) and GGA+U. A shift up in the Fermi energy was observed after the intercalation of 2H-NbSe2 with iron, indicating a charge transfer from Fe to the host compound. The obtained magnetic moment of Fe is enhanced by a correlation effect in both DFT+U and DFT+EECE over the small value from GGA-only. Moreover, a large unquenched orbital magnetic moment is saturated to \(m_{orb} \sim 0.6\mu _{B}\) under a moderate correlation effect of \(U_{eff}\sim 2.0eV\). We also show that the correlation effect is important along side with SOC in order to get a true picture for the band filling consistent with that of the crystal field splitting and a large unquenched \(m_{orb}\) which has been found experimentally in such systems. Therefore, the combination of correlation and SOC effects is a decisive choice for further studies of such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wadley, P., Howells, B., železný, J., Andrews, C., Hills, V., Campion, R.P., Novák, V., Olejínk, K., Maccherozzi, F., Dhesi, S.S., Martin, S.Y., Wagner, T., Wunderlich, J., Freimuth, F., Mokrousov, Y., Kuneš, J., Chauhan, J.S., Grzybowski, M.J., Rushforth, A.W., Edmonds, K.W., Gallagher, B.L., Jungwirth, T.: Science 351(6273), 587 (2016). https://doi.org/10.1126/science.aab1031. http://science.sciencemag.org/content/351/6273/587

    Article  ADS  Google Scholar 

  2. Gomonay, O., Jungwirth, T., Sinova, J.: Phys. Stat. Solidi (RRL)– Rapid Res. Lett. 11(4), 1700022 (2017). https://doi.org/10.1002/pssr.201700022

    Article  ADS  Google Scholar 

  3. Wilson, J.A., Yoffe, A.D.: Adv. Phys. 18, 193 (1969). https://doi.org/10.1080/00018736900101307

    Article  ADS  Google Scholar 

  4. Wilson, J., Salvo, F.D., Mahajan, S.: Adv. Phys. 24(2), 117 (1975). https://doi.org/10.1080/00018737500101391

    Article  ADS  Google Scholar 

  5. Chhowalla, M., Shin, H.S., Eda, G., Li, L.J., Loh, K.P., Zhang, H.: Nat. Chem. 5(4), 263 (2013)

    Article  Google Scholar 

  6. van Den Berg, J.V., Sherwood, R.: J. Phys. Chem. Solids 32(1), 167 (1971). https://doi.org/10.1016/S0022-3697(71)80019-7. http://www.sciencedirect.com/science/article/pii/S0022369771800197

    Article  Google Scholar 

  7. Friend, R., Yoffe, A.: Adv. Phys. 36(1), 1 (1987). https://doi.org/10.1080/00018738700101951

    Article  ADS  Google Scholar 

  8. Vandenberg-Voorhoeve, J.M.: Structural and magnetic properties of layered chalcogenides of the transition elements, pp 423–457. Springer Netherlands, Dordrecht (1976)

    Google Scholar 

  9. Parkin, S.S.P., Friend, R.H.: Philos. Mag. B 41(1), 65 (1980). https://doi.org/10.1080/13642818008245370

    Article  ADS  Google Scholar 

  10. Parkin, S.S.P., Friend, R.H.: Philos. Mag. B 41(1), 95 (1980). https://doi.org/10.1080/13642818008245371

    Article  ADS  Google Scholar 

  11. Friend, R.H., Beal, A.R., Yoffe, A.D.: Philos. Mag. 35(5), 1269 (1977). https://doi.org/10.1080/14786437708232952

    Article  ADS  Google Scholar 

  12. Morosan, E., Natelson, D., Nevidomsky, A.H., Si, Q.: Adv. Mater. 24(36), 4896 (2012). https://doi.org/10.1002/adma.201202018

    Article  Google Scholar 

  13. Narita, H., Ikuta, H., Hinode, H., Uchida, T., Ohtani, T., Wakihara, M.: J. Solid State Chem. 108(1), 148 (1994). https://doi.org/10.1006/jssc.1994.1022. http://www.sciencedirect.com/science/article/pii/S002245968471022X

    Article  ADS  Google Scholar 

  14. Morosan, E., Zandbergen, H.W., Li, L., Lee, M., Checkelsky, J.G., Heinrich, M., Siegrist, T., Ong, N.P., Cava, R.J.: Phys. Rev. B 75, 104401 (2007). https://doi.org/10.1103/PhysRevB.75.104401. https://link.aps.org/doi/10.1103/PhysRevB.75.104401

    Article  ADS  Google Scholar 

  15. Checkelsky, J.G., Lee, M., Morosan, E., Cava, R.J., Ong, N.P.: Phys. Rev. B 77, 014433 (2008). https://doi.org/10.1103/PhysRevB.77.014433. https://link.aps.org/doi/10.1103/PhysRevB.77.014433

    Article  ADS  Google Scholar 

  16. Hardy, W.J., Chen, C.W., Marcinkova, A., Ji, H., Sinova, J., Natelson, D., Morosan, E.: Phys. Rev. B 91, 054426 (2015). https://doi.org/10.1103/PhysRevB.91.054426. https://link.aps.org/doi/10.1103/PhysRevB.91.054426

    Article  ADS  Google Scholar 

  17. Choi, Y. J., Kim, S. B., Asada, T., Park, S., Wu, W., Horibe, Y., Cheong, S-W.: EPL 86 (3), 37012 (2009). https://doi.org/10.1209/0295-5075/86/37012

    Article  ADS  Google Scholar 

  18. Corcoran, R., Meeson, P., Onuki, Y., Probst, P.A., Springford, M., Takita, K., Harima, H., Guo, G.Y., Gyorffy, B.L.: J. Phys. Condens. Matter 6(24), 4479 (1994). http://stacks.iop.org/0953-8984/6/i=24/a=010

    Article  ADS  Google Scholar 

  19. Rossnagel, K., Seifarth, O., Kipp, L., Skibowski, M., Voß, D., Krüger, P., Mazur, A., Pollmann, J.: Phys. Rev. B 64(23), 235119 (2001)

    Article  ADS  Google Scholar 

  20. Johannes, M.D., Mazin, I.I., Howells, C.A.: Phys. Rev. B 73, 205102 (2006). https://doi.org/10.1103/PhysRevB.73.205102. https://link.aps.org/doi/10.1103/PhysRevB.73.205102

    Article  ADS  Google Scholar 

  21. Rahn, D., Hellmann, S., Kalläne, M., Sohrt, C., Kim, T., Kipp, L., Rossnagel, K.: Phys. Rev. B 85(22), 224532 (2012)

    Article  ADS  Google Scholar 

  22. Flicker, F., Van Wezel, J.: arXiv:1502.06816 (2015)

  23. Arguello, C., Rosenthal, E., Andrade, E., Jin, W., Yeh, P., Zaki, N., Jia, S., Cava, R., Fernandes, R., Millis, A., et al.: Phys. Rev. Lett. 114(3), 037001 (2015)

    Article  ADS  Google Scholar 

  24. Bawden, L., Cooil, S., Mazzola, F., Riley, J., Collins-McIntyre, L., Sunko, V., Hunvik, K., Leandersson, M., Polley, C., Balasubramanian, T., et al.: Nat. Commun. 7 (2016)

  25. Hauser, J.J., Robbins, M., DiSalvo, F.J.: Phys. Rev. B 8, 1038 (1973). https://doi.org/10.1103/PhysRevB.8.1038. https://link.aps.org/doi/10.1103/PhysRevB.8.1038

    Article  ADS  Google Scholar 

  26. Whitney, D.A., Fleming, R.M., Coleman, R.V.: Phys. Rev. B 15, 3405 (1977). https://doi.org/10.1103/PhysRevB.15.3405. https://link.aps.org/doi/10.1103/PhysRevB.15.3405

    Article  ADS  Google Scholar 

  27. Dai, Z., Xue, Q., Gong, Y., Slough, C.G., Coleman, R.V.: Phys. Rev. B 48, 14543 (1993). https://doi.org/10.1103/PhysRevB.48.14543. https://link.aps.org/doi/10.1103/PhysRevB.48.14543

    Article  ADS  Google Scholar 

  28. Coleman, R.V., Dai, Z., Gong, Y., Slough, C.G., Xue, Q.: J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom. 12(3), 1801 (1994). https://doi.org/10.1116/1.587603

    Article  ADS  Google Scholar 

  29. Hulliger, F., Pobitschka, E.: J. Solid State Chem. 1(2), 117 (1970). https://doi.org/10.1016/0022-4596(70)90001-0. http://www.sciencedirect.com/science/article/pii/0022459670900010

    Article  ADS  Google Scholar 

  30. Ko, K.T., Kim, K., Kim, S.B., Kim, H.D., Kim, J.Y., Min, B.I., Park, J.H., Chang, F.H., Lin, H.J., Tanaka, A., Cheong, S.W.: Phys. Rev. Lett. 107, 247201 (2011). https://doi.org/10.1103/PhysRevLett.107.247201. https://link.aps.org/doi/10.1103/PhysRevLett.107.247201

    Article  ADS  Google Scholar 

  31. Kirchmayr, H.R.: J. Phys. D. Appl. Phys. 29(11), 2763 (1996). http://stacks.iop.org/0022-3727/29/i=11/a=007

    Article  ADS  Google Scholar 

  32. Suzuki, N., Yamazaki, Y., Teshima, T., Motizuki, K.: Physica, B: Condens. Matter 156, 286 (1989). https://doi.org/10.1016/0921-4526(89)90655-8. http://www.sciencedirect.com/science/article/pii/0921452689906558

    Article  ADS  Google Scholar 

  33. Koh, Y., Cho, S., Lee, J., Yang, L.X., Zhang, Y., He, C., Chen, F., Feng, D.L., Arita, M., Shimada, K., Namatame, H., Taniguchi, M., Kim, C.: Jpn. J. Appl. Phys. 52(10S), 10MC15 (2013). http://stacks.iop.org/1347-4065/52/i=10S/a=10MC15

    Article  Google Scholar 

  34. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J: An augmented plane wave+ local orbitals program for calculating crystal properties (2001)

  35. Hohenberg, P., Kohn, W.: Phys. Rev. 136, B864 (1964). https://doi.org/10.1103/PhysRev.136.B864. https://link.aps.org/doi/10.1103/PhysRev.136.B864

    Article  ADS  Google Scholar 

  36. Kohn, W., Sham, L.J.: Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133. https://link.aps.org/doi/10.1103/PhysRev.140.A1133

    Article  ADS  Google Scholar 

  37. Sjöstedt, E., Nordström, L., Singh, D: Solid State Commun. 114(1), 15 (2000). https://doi.org/10.1016/S0038-1098(99)00577-3. http://www.sciencedirect.com/science/article/pii/S0038109899005773

    Article  ADS  Google Scholar 

  38. Madsen, G.K.H., Blaha, P., Schwarz, K., Sjöstedt, E., Nordström, L.: Phys. Rev. B 64, 195134 (2001). https://doi.org/10.1103/PhysRevB.64.195134. https://link.aps.org/doi/10.1103/PhysRevB.64.195134

    Article  ADS  Google Scholar 

  39. Hamada, I.: Phys. Rev. B 89, 121103 (2014). https://doi.org/10.1103/PhysRevB.89.121103. https://link.aps.org/doi/10.1103/PhysRevB.89.121103

    Article  ADS  Google Scholar 

  40. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996). https://link.aps.org/doi/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  41. Meerschaut, A., Deudon, C.: Mater. Res. Bull. 36(9), 1721 (2001). https://doi.org/10.1016/S0025-5408(01)00646-8. http://www.sciencedirect.com/science/article/pii/S0025540801006468

    Article  Google Scholar 

  42. Birch, F.: Phys. Rev. 71, 809 (1947). https://doi.org/10.1103/PhysRev.71.809. https://link.aps.org/doi/10.1103/PhysRev.71.809

    Article  ADS  Google Scholar 

  43. Schwarz, K., Blaha, P., Madsen, G.: Comput. Phys. Commun. 147(1), 71 (2002). https://doi.org/10.1016/S0010-4655(02)00206-0. http://www.sciencedirect.com/science/article/pii/S0010465502002060. Proceedings of the Europhysics Conference on Computational Physics Computational Modeling and Simulation of Complex Systems

    Article  ADS  Google Scholar 

  44. Mankovsky, S., Chadova, K., Ködderitzsch, D., Minár, J., Ebert, H., Bensch, W.: Phys. Rev. B 92, 144413 (2015). https://doi.org/10.1103/PhysRevB.92.144413. https://link.aps.org/doi/10.1103/PhysRevB.92.144413

    Article  ADS  Google Scholar 

  45. Anisimov, V.I., Solovyev, I.V., Korotin, M.A., CzyŻŻyk, M.T., Sawatzky, G.A.: Phys. Rev. B 48, 16929 (1993). https://doi.org/10.1103/PhysRevB.48.16929. https://link.aps.org/doi/10.1103/PhysRevB.48.16929

    Article  ADS  Google Scholar 

  46. Liechtenstein, A.I., Anisimov, V.I., Zaanen, J.: Phys. Rev. B 52, R5467 (1995). https://link.aps.org/doi/10.1103/PhysRevB.52.R5467

    Article  ADS  Google Scholar 

  47. Novák, P., Kuneš, J., Chaput, L., Pickett, W.E.: Phys. Status Solidi (b) 243(3), 563 (2006). https://doi.org/10.1002/pssb.200541371

    Article  ADS  Google Scholar 

  48. Marezio, M., Dernier, P., Menth, A., Hull, G.: J. Solid State Chem. 4(3), 425 (1972). https://doi.org/10.1016/0022-4596(72)90158-2. http://www.sciencedirect.com/science/article/pii/0022459672901582

    Article  ADS  Google Scholar 

  49. Selte, K., Kjekshus, A.: Acta Chem. Scand. 18(3) (1964)

  50. Dion, M., Rydberg, H., Schröder, E., Langreth, D.C., Lundqvist, B.I.: Phys. Rev. Lett. 92, 246401 (2004). https://doi.org/10.1103/PhysRevLett.92.246401

    Article  ADS  Google Scholar 

  51. Peng, H., Yang, Z.H., Perdew, J.P., Sun, J.: Phys. Rev. X 6, 041005 (2016). https://doi.org/10.1103/PhysRevX.6.041005. https://link.aps.org/doi/10.1103/PhysRevX.6.041005

    Article  Google Scholar 

  52. Berland, K., Cooper, V.R., Lee, K., Schröder, E., Thonhauser, T., Hyldgaard, P., Lundqvist, B.I.: Rep. Prog. Phys. 78(6), 066501 (2015). http://stacks.iop.org/0034-4885/78/i=6/a=066501

    Article  ADS  Google Scholar 

  53. Bucko, T., Hafner, J., Lebegue, S., Angyán, J.G.: J. Phys. Chem. A 114(43), 11814 (2010)

    Article  Google Scholar 

  54. Bučko, T.C.V., Lebègue, S., Hafner, J., Ángyán, J.G.: Phys. Rev. B 87, 064110 (2013). https://doi.org/10.1103/PhysRevB.87.064110. https://link.aps.org/doi/10.1103/PhysRevB.87.064110

    Article  ADS  Google Scholar 

  55. Mattheiss, L.: Phys. Rev. B 8(8), 3719 (1973)

    Article  ADS  Google Scholar 

  56. Chen, L., Li, C., Tang, H., Li, H., Liu, X., Meng, J.: RSC Adv. 4, 9573 (2014). https://doi.org/10.1039/C3RA47237J

    Article  Google Scholar 

  57. Li, H., Chen, L., Zhang, K., Liang, J., Tang, H., Li, C., Liu, X., Meng, J., Wang, Z.: J. Appl. Phys. 116(10), 103709 (2014). https://doi.org/10.1063/1.4895489

    Article  ADS  Google Scholar 

  58. Li, H., Liu, S., Chen, L., Wu, J., Zhang, P., Tang, H., Li, C., Liu, X., Wang, Z., Meng, J.: RSC Adv. 4(101), 57541 (2014)

    Article  Google Scholar 

  59. Basov, D.N., Chubukov, A.V.: Nat. Phys. 7(4), 272 (2011). https://doi.org/10.1038/nphys1975

    Article  Google Scholar 

  60. Qazilbash, M.M., Hamlin, J.J., Baumbach, R.E., Zhang, L., Singh, D.J., Maple, M.B., Basov, D.N.: Nat. Phys. 5(9), 647 (2009). https://doi.org/10.1038/nphys1343

    Article  Google Scholar 

  61. Lu, D.H., Yi, M., Mo, S.K., Erickson, A.S., Analytis, J., Chu, J.H., Singh, D.J., Hussain, Z., Geballe, T.H., Fisher, I.R., Shen, Z.X.: Nature 455(7209), 81 (2008). https://doi.org/10.1038/nature07263

    Article  ADS  Google Scholar 

  62. Messiad, M., Zanat, K., Hamidani, A.: J. Magn. Magn. Mater. 441(Supplement C), 424 (2017). https://doi.org/10.1016/j.jmmm.2017.06.018. http://www.sciencedirect.com/science/article/pii/S030488531731106X

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (H.K.) would like to thank Dr. Ali Hamidani, University of Guelma-Algeria, for many useful comments and also Professor Samir Lounis from the Peter Grunberg institute for their valuable insights and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemza Kouarta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouarta, H., Zanat, K. & Belkhir, H. Magnetic Behavior of Superconductor 2H-NbSe2 Intercalated with Iron: First Principle Study. J Supercond Nov Magn 32, 805–819 (2019). https://doi.org/10.1007/s10948-018-4742-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4742-4

Keywords

Navigation