The Effects of Ferromagnetic Disks on AC Losses in HTS Pancake Coils with Nonmagnetic and Magnetic Substrates

  • Mengdie Niu
  • Huadong YongEmail author
  • Jing Xia
  • Youhe Zhou
Original Paper


Performance improvement of high-temperature superconducting (HTS) pancake coil is of paramount importance for its application in electrical facilities. In this paper, the utilization of ferromagnetic disks including weak magnetic material and strong magnetic material is investigated through numerical simulations for the aim of reducing the AC loss. Both the nonmagnetic and magnetic substrates are considered for the rare-earth-barium-copper-oxide coated conductor tapes wounded into the pancake coil. In order to analyze the influences of ferromagnetic disks on the maximum allowable currents and AC losses of nonmagnetic substrate-based coil and magnetic substrate-based coil, a self-consistent model based on the A-formulation is adopted to calculate the critical current and a 2D axisymmetric model built on the H-formulations is established to calculate the AC loss. According to the simulation results, it is found that ferromagnetic disks especially the strong magnetic disk are slightly detrimental to the critical currents of the pancake coils. Nevertheless, the presence of large background field weakens the effects of ferromagnetic disks. The simulation results also indicate that strong magnetic disks achieve about 50% reduction of the AC loss in the nonmagnetic substrate-based coil, and the AC loss of the magnetic substrate-based coil can be increased or reduced with strong magnetic disks depending on the applied current amplitude. The utilization of strong magnetic disks leads to the enhancement of the AC loss in the magnetic substrate-based coil at lower current and to the reduction of it at larger current.


Pancake coil Magnetic substrate Ferromagnetic disk Critical current AC loss 


Funding Information

The authors acknowledge the supports from the National Natural Science Foundation of China (nos. 11327802 and 11472120), 111 Project (B14044), the Fundamental Research Funds for the Central Universities (lzujbky-2017-k18), and the China Postdoctoral Science Foundation (no. 2017M610064).


  1. 1.
    Yang, Y., Duan, S., Ren, Y., Jiang, Y., Feng, L., Zhang, X., Chai, H., Kuang, M., Wu, J., Yang, X.: Design and development of a cryogen-free superconducting prototype generator with YBCO field windings. IEEE Trans. Appl. Supercond. 26, 1 (2016)Google Scholar
  2. 2.
    Ali, M.H., Wu, B., Dougal, R.A.: An overview of SMES applications in power and energy systems. IEEE Trans. Sustain. Energy 1, 38 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Pan, A.V., MacDonald, L., Baiej, H., Cooper, P.: Theoretical consideration of superconducting coils for compact superconducting magnetic energy storage systems. IEEE Trans. Appl. Supercond. 26, 1 (2016)Google Scholar
  4. 4.
    Weijers, H.W., Trociewitz, U.P., Markiewicz, W.D., Jiang, J., Myers, D., Hellstrom, E.E., Xu, A., Jaroszynski, J., Noyes, P., Viouchkov, Y., Larbalestier, D.C.: High field magnets with HTS conductors. IEEE Trans. Appl. Supercond. 20, 576 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Van der Laan, D.C., Lu, X., Goodrich, L.F.: Compact GdBa2Cu3O7–δ coated conductor cables for electric power transmission and magnet applications. Supercond. Sci. Technol. 24, 042001 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Liu, G., Zhang, G., Jing, L., Yu, H., Ai, L., Yuan, W., Li, W.: Influence of substrate magnetism on frequency-dependent transport loss in HTS-coated conductors. IEEE Trans. Appl. Supercond. 27, 1 (2017)Google Scholar
  7. 7.
    Rupich, M.W., Verebelyi, D.T., Zhang, W., Kodenkandath, T., Li, X.: Metalorganic deposition of YBCO films for second-generation high-temperature superconductor wires. MRS Bull. 29, 572 (2004)CrossRefGoogle Scholar
  8. 8.
    Hazelton, D.W., Selvamanickam, V., Duval, J.M., Larbalestier, D.C., Markiewicz, W.D., Weijers, H.W., Holtz, R.L.: Recent developments in 2G HTS coil technology. IEEE Trans. Appl. Supercond. 19, 2218 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Xia, J., Bai, H., Lu, J., Gavrilin, A.V., Zhou, Y., Weijers, H.W.: Electromagnetic modeling of REBCO high field coils by the H-formulation. Supercond. Sci. Technol. 28, 125004 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Polak, M., Usak, E., Jansak, L., Demencik, E., Levin, G.A., Barnes, P.N., Wehler, D., Moenter, B.: Coupling losses and transverse resistivity of multifilament YBCO coated superconductors. J. Phys.:. Conf. Ser. 43, 591 (2006)ADSGoogle Scholar
  11. 11.
    Carr, W., Oberly, C.: Filamentary YBCO conductors for AC applications. IEEE Trans. Appl. Supercond. 9, 1475 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Lakshmi, L.S., Thakur, K.P., Staines, M.P., Badcock, R.A., Long, N.J.: Magnetic AC loss characteristics of 2G Roebel cable. IEEE Trans. Appl. Supercond. 19, 3361 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Grilli, F., Zermeño, V., Vojenčiak, M., Pardo, E., Kario, A., Goldacker, W.: AC losses of pancake coils made of Roebel cable. IEEE Trans. Appl. Supercond. 23, 5900205 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Levin, G.A., Barnes, P.N.: Concept of multiply connected superconducting tapes. IEEE Trans. Appl. Supercond. 15, 2158 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Ainslie, M.D., Yuan, W., Flack, T.J.: Numerical analysis of AC loss reduction in HTS superconducting coils using magnetic materials to divert flux. IEEE Trans. Appl. Supercond. 23, 4700104 (2013)CrossRefGoogle Scholar
  16. 16.
    Farinon, S., Fabbricatore, P., Gomory, F., Greco, M., Seiler, E.: Modeling of current density distributions in critical state by commercial FE codes. IEEE Trans. Appl. Supercond. 15, 2867 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    He, A., Xue, C., Yong, H., Zhou, Y.: Effect of soft ferromagnetic substrate on ac loss in 2G HTS power transmission cables consisting of coated conductors. Supercond. Sci. Technol. 27, 025004 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Wan, X.X., Huang, C.G., Yong, H.D., Zhou, Y.H.: Effect of the magnetic material on AC losses in HTS conductors in AC magnetic field carrying AC transport current. AIP Adv. 5, 117139 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Yong, H., Zhao, M., Jing, Z., Zhou, Y.: Effect of shear stress on electromagnetic behaviors in superconductor-ferromagnetic bilayer structure. J. Appl. Phys. 116, 123911 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Ma, G.-T.: Hysteretic ac loss in a coated superconductor subjected to oscillating magnetic fields: ferromagnetic effect and frequency dependence. Supercond. Sci. Technol. 27, 065011 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Krüger, P., Grilli, F., Vojenčiak, M., Zermeño, V.M.R., Demencik, E., Farinon, S.: Superconductor/ferromagnet heterostructures exhibit potential for significant reduction of hysteretic losses. Appl. Phys. Lett. 102, 202601 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Gömöry, F., Vojenčiak, M., Pardo, E., Solovyov, M., Šouc, J.: AC losses in coated conductors. Supercond. Sci. Technol. 23, 034012 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Gömöry, F., Vojenčiak, M., Pardo, E., Šouc, J.: Magnetic flux penetration and AC loss in a composite superconducting wire with ferromagnetic parts. Supercond. Sci. Technol. 22, 034017 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Majoros, M., Glowacki, B.A., Campbell, A.M.: Transport ac losses and screening properties of Bi-2223 multifilamentary tapes covered with magnetic materials. Physica C 338, 251 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    Ogawa, J., Fukui, S., Oka, T., Sakurai, T., Sano, Y., Tada, H., Yoshii, Y.: Experimental investigation of AC loss characteristics of stacked HTS Tapes in an iron core. IEEE Trans. Appl. Supercond. 26, 1 (2016)CrossRefGoogle Scholar
  26. 26.
    Lai, L., Gu, C., Qu, T., Zhang, M., Li, Y., Liu, R., Coombs, T., Han, Z.: Simulation of AC loss in small HTS coils with iron core. IEEE Trans. Appl. Supercond. 25, 1 (2015)CrossRefGoogle Scholar
  27. 27.
    Pardo, E., Šouc, J., Vojenčiak, M.: AC loss measurement and simulation of a coated conductor pancake coil with ferromagnetic parts. Supercond. Sci. Technol. 22, 075007 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Ainslie, M.D., Hu, D., Zou, J., Cardwell, D.A.: Simulating the in-field AC and DC performance of high-temperature superconducting coils. IEEE Trans. Appl. Supercond. 25, 1 (2015)CrossRefGoogle Scholar
  29. 29.
    Liu, G., Zhang, G., Jing, L., Yu, H.: Numerical study on AC loss reduction of stacked HTS tapes by optimal design of flux diverter. Supercond. Sci. Technol. 30, 125014 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    Suenaga, M., Li, Q.: Effects of magnetic substrates on ac losses of Y Ba 2 Cu 3 O 7 films in perpendicular ac magnetic fields. Appl. Phys. Lett. 88, 262501 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Mawatari, Y.: Magnetic field distributions around superconducting strips on ferromagnetic substrates. Phys. Rev. B 77, 104505 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Sanchez, A., Del-Valle, N., Navau, C., Chen, D.X.: Influence of magnetic substrate in the transport critical current of superconducting tapes. Appl. Phys. Lett. 97, 072504 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Zhang, M., Kvitkovic, J., Kim, J.H., Kim, C., Pamidi, S., Coombs, T.: Alternating current loss of second-generation high-temperature superconducting coils with magnetic and non-magnetic substrate. Appl. Phys. Lett. 101, 102602 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Zhang, M., Kvitkovic, J., Kim, J.H., Kim, C.H., Pamidi, S.V., Coombs, T.A.: Alternating current loss of second-generation high-temperature superconducting coils with magnetic and non-magnetic substrate. Appl. Phys. Lett. 101, 102602 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Šouc, J., Pardo, E., Vojenčiak, M., Gömöry, F.: Theoretical and experimental study of AC loss in high temperature superconductor single pancake coils. Supercond. Sci. Technol. 22, 015006 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Genenko, Y.A., Snezhko, A., Freyhardt, H.C.: Overcritical states of a superconductor strip in a magnetic environment. Phys. Rev. B 62, 3453 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    Erdogan, M., Tunc, S., Inanir, F.: AC loss analysis of HTS pancake coil of coated superconductors with ferromagnetic substrate. J. Supercond. Novel. Magn. 30, 1993 (2016)CrossRefGoogle Scholar
  38. 38.
    Li, S., Chen, D.X., Fang, J.: Transport ac losses of a second-generation HTS tape with a ferromagnetic substrate and conducting stabilizer. Supercond. Sci. Technol. 28, 125011 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    Ainslie, M.D., Flack, T.J., Campbell, A.M.: Calculating transport AC losses in stacks of high temperature superconductor coated conductors with magnetic substrates using FEM. Physica C 472, 50 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    Zermeno, V.M., Abrahamsen, A.B., Mijatovic, N., Jensen, B.B., Sørensen, M.P.: Calculation of alternating current losses in stacks and coils made of second generation high temperature superconducting tapes for large scale applications. J. Appl. Phys. 114, 173901 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    Thakur, K.P., Raj, A., Brandt, E.H., Kvitkovic, J., Pamidi, S.V.: Frequency-dependent critical current and transport ac loss of superconductor strip and Roebel cable. Supercond. Sci. Technol. 24, 065024 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    Haynes, W.M.: CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton (2014)Google Scholar
  43. 43.
    Lu, J., Choi, E.S., Zhou, H.D.: Physical properties of Hastelloy®C-276™at cryogenic temperatures. J. Appl. Phys. 103, 064908 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    Lakshmi, L.S., Staines, M.P., Badcock, R.A., Long, N.J., Majoros, M., Collings, E.W., Sumption, M.D.: Frequency dependence of magnetic ac loss in a Roebel cable made of YBCO on a Ni–W substrate. Supercond. Sci. Technol. 23, 085009 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    Zermeño, V., Sirois, F., Takayasu, M., Vojenciak, M., Kario, A., Grilli, F.: A self-consistent model for estimating the critical current of superconducting devices. Supercond. Sci. Technol. 28, 085004 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    Zermeño, V.M., Quaiyum, S., Grilli, F.: Open-source codes for computing the critical current of superconducting devices. IEEE Trans. Appl. Supercond. 26, 1 (2016)CrossRefGoogle Scholar
  47. 47.
    Liu, D., Xia, J., Yong, H., Zhou, Y.: Estimation of critical current distribution in Bi2Sr2CaCu2Ox cables and coils using a self-consistent model. Supercond. Sci. Technol. 29, 065020 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    Miyagi, D., Yunoki, Y., Umabuchi, M., Takahashi, N., Tsukamoto, O.: Measurement of magnetic properties of Ni-alloy substrate of HTS coated conductor in LN2. Physica C 468, 1743 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    Nguyen, D.N., Ashworth, S.P., Willis, J.O., Sirois, F., Grilli, F.: A new finite-element method simulation model for computing AC loss in roll assisted biaxially textured substrate YBCO tapes. Supercond. Sci. Technol. 23, 025001 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    Brambilla, R., Grilli, F., Martini, L.: Development of an edge-element model for AC loss computation of high-temperature superconductors. Supercond. Sci. Technol. 20, 16 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    Hong, Z., Campbell, A.M., Coombs, T.A.: Numerical solution of critical state in superconductivity by finite element software. Supercond. Sci. Technol. 19, 1246 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    Sirois, F., Dione, M., Roy, F., Grilli, F., Dutoit, B.: Evaluation of two commercial finite element packages for calculating AC losses in 2-D high temperature superconducting strips. J. Phys.: Conf. Ser. 97, 012030 (2008)Google Scholar
  53. 53.
    Kajikawa, K., Hayashi, T., Yoshida, R., Iwakuma, M., Funaki, K.: Numerical evaluation of AC losses in HTS wires with 2D FEM formulated by self magnetic field. IEEE Trans. Appl. Supercond. 13, 3630 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    Xia, J., Yong, H., Zhou, Y.: Numerical simulations of the alternating current loss in round high-temperature superconducting wire with a hole defect. J. Appl. Phys. 114, 093905 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    Bishop, J.: Tables of the frequency dependence of permeability for the Polivanov domain model. J. Phys. D: Appl. Phys. 4, 1235 (1971)ADSCrossRefGoogle Scholar
  56. 56.
    Samantaray, B., Singh, A.K., Perumal, A., Ranganathan, R., Mandal, P.: Spin dynamics and frequency dependence of magnetic damping study in soft ferromagnetic FeTaC film with a stripe domain structure. AIP Adv. 5, 067157 (2015)ADSCrossRefGoogle Scholar
  57. 57.
    Zola, D., Gömöry, F., Polichetti, M., Strýček, F., Seiler, E., Hušek, I., Kováč, P., Pace, S.: A study of coupling loss on bi-columnar BSCCO/Ag tapes through ac susceptibility measurements. Supercond. Sci. Technol. 17, 501 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mengdie Niu
    • 1
    • 2
  • Huadong Yong
    • 1
    • 2
    Email author
  • Jing Xia
    • 3
  • Youhe Zhou
    • 1
    • 2
  1. 1.Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education of ChinaLanzhou UniversityLanzhouPeople’s Republic of China
  2. 2.Department of Mechanics and Engineering Sciences, College of Civil Engineering and MechanicsLanzhou UniversityLanzhouPeople’s Republic of China
  3. 3.Center for Fusion Energy Science and TechnologyChina Academy of Engineering PhysicsBeijingPeople’s Republic of China

Personalised recommendations