Magnetic and Thermal Design of HTS Quadrupole Magnet for Newly Developed Superconducting Proton Cyclotron Beam Line

Abstract

A magnetic and thermal design of high-temperature superconducting (HTS) quadrupole magnet for newly developed superconducting proton cyclotron was presented in this research. With superconducting technology, the design can reduce the magnet size and remove the heat loads more efficiently. Calculations are conducted with finite element method (FEM) to study the quadrupole magnet’s magnetic and thermal properties. For the magnet cold-mass and cryostat system, the heat load is mainly generated by conduction and radiation. Multilayer thermal insulation and G10 supports are used to restrict them. The magnetic field distribution in the HTS coils is calculated to consider the critical current degradation of the YBCO tapes. The effects on the field gradient quality in relation to the pole tip profile and end chamfer are analyzed. The sixth multipole component in the integral field can be improved with end chamfer. Finally, a 20 T/m HTS quadrupole magnet with integral field uniformity less than 0.05% out to 75% of the inscribed radius is proposed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    Coutrakon, G, Hubbard, J, Johanning, J, et al.: A performance study of the Loma Linda proton medical accelerator. Med. Phys. 21(11), 1691–1701 (1994)

    Article  Google Scholar 

  2. 2.

    Toshito, T., Omachi, C, Kibe, Y., et al.: A proton therapy system in Nagoya Proton Therapy Center. Australas. Phys. Eng. Sci. 39(3), 645–654 (2016)

    Article  Google Scholar 

  3. 3.

    Wan, W., Brouwer, L., Caspi, S., et al.: Alternating-gradient canted cosine theta superconducting magnets for future compact proton gantries. Phys. Rev. Spec. Top. Accel. Beams 10, 18 (2015)

    Google Scholar 

  4. 4.

    Iwata, Y., Shirai, T., Noda, K.: Design of superconducting magnets for a compact carbon gantry. IEEE Trans. Appl. Supercond. 26(4), Art. ID 4400104 (2016)

    Article  Google Scholar 

  5. 5.

    Obana, T., Ogitsu, T.: Magnetic field and structure analysis of a superconducting dipole magnet for a rotating gantry. Physica C 471, 1445–1448 (2011)

    ADS  Article  Google Scholar 

  6. 6.

    Iwata, Y., et al.: Development of curved combined-function superconducting magnets for a heavy-ion rotating-gantry. IEEE Trans. Appl. Supercond. 24(3), 4400505 (2014)

    Article  Google Scholar 

  7. 7.

    Brouwer, L., Caspi, S., Hafalia, R., et al: Design of an achromatic superconducting magnet for a proton therapy gantry. IEEE Trans. Appl. Supercond. 27(4), Art. ID 4400106 (2017)

    Article  Google Scholar 

  8. 8.

    Meyer, D.I., Flasck, R.: A new configuration for a dipole magnet for use in high energy physics application. Nucl. Instr. Methods 80, 339–341 (1970)

    Article  Google Scholar 

  9. 9.

    Robin, D.S.: Superconducting toroidal combined-function magnet for a compact ion beam cancer therapy gantry. Nucl. Instrum. Methods Phys. Res. A 659(1), 484–493 (2011)

    ADS  Article  Google Scholar 

  10. 10.

    Caspi, S., et al.: Conceptual design of a 260 mm bore 5 T superconducting curved dipole magnet for a carbon beam therapy gantry. IEEE Trans. Appl. Supercond. 22(3), 4401204 (2012)

    ADS  Article  Google Scholar 

  11. 11.

    Caspi, S., et al.: A superconducting magnet mandrel with minimum symmetry laminations for proton therapy. Nucl. Instrum. Methods Phys. Res. A 719(11), 44–49 (2013)

    ADS  Article  Google Scholar 

  12. 12.

    Cornuet, D., et al.: QTG quadrupole magnets for the CNGS transfer line. IEEE Trans. Appl. Supercond. 14(2), 600–603 (2004)

    ADS  Article  Google Scholar 

  13. 13.

    Tommasini, D., Buzio, M., Thonet, P.A., Vorozhtsov, A.: Design, manufacture and measurements of permanent quadrupole magnets for linac4. IEEE Trans. Appl. Supercond. 22(3), 4000704 (2012)

    Article  Google Scholar 

  14. 14.

    Kalimov, A., Potienko, Wollnik, H.: Optimization of the pole shape of quadrupole magnets by MULTIMAG. IEEE Trans. Appl. Supercond. 16(2), 1282–1285 (2006)

    ADS  Article  Google Scholar 

  15. 15.

    Zhang, Z., Lee, S., Jo, H.C., Kim, D.G., Kim, J.: A study on the optimization of an HTS quadrupole magnet system for a heavy ion accelerator through evolution strategy. IEEE Trans. Appl. Supercond. 26(4), 4001304 (2016)

    Google Scholar 

  16. 16.

    Shin, H.S., et al.: The strain effect on critical current in YBCO coated conductors with different stabilizing layers, Supercond. Sci. Technol. 12, 18 (2005)

    Google Scholar 

  17. 17.

    Zhu, Y.P., et al.: The study of critical current for YBCO tape in distorted bending mode. J. Supercond. Magn. 28, 3519–3523 (2015)

    Article  Google Scholar 

  18. 18.

    Markiewicz, W.D., Swenson, C.A.: Winding strain analysis for YBCO coated conductors. Supercond. Sci. Technol. 23(4), Art. ID 045017 (2010)

    ADS  Article  Google Scholar 

  19. 19.

    Miyoshi, Y., Nishijima, G., Kitaguchi, H., Chaud, X.: High field Ic characterizations of commercial HTS conductors. Physica C 516, 31–35 (2015)

    ADS  Article  Google Scholar 

Download references

Funding

The authors are grateful for the financial support of Hefei CAS Ion Medical and Technical Devices Co., Ltd. on our research. This work was supported in part by the National Natural Science Foundation of China under Grant No. 51525703.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun-Sheng Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, JS., Song, YT., Zhang, WQ. et al. Magnetic and Thermal Design of HTS Quadrupole Magnet for Newly Developed Superconducting Proton Cyclotron Beam Line. J Supercond Nov Magn 32, 529–538 (2019). https://doi.org/10.1007/s10948-018-4736-2

Download citation

Keywords

  • HTS
  • Quadrupole magnet
  • Thermal shield
  • Heat load
  • Field quality