Advertisement

Study of Magnetocaloric Effect on Strontium Ferrite SrFe12O19 Ceramic

  • A. Jabar
  • R. Masrour
  • O. Mounkachi
  • H. El Moussaoui
  • M. Hamedoun
  • A. Benyoussef
  • E. K. Hlil
Original Paper
  • 40 Downloads

Abstract

Magnetocaloric effect on SrFe12O19 ceramic have been studied using Monte Carlo simulation. The thermal magnetization, dM/dT, magnetic entropy, and the specific heat of SrFe12O19 ceramic are obtained for several magnetic fields. The temperatures dependence of the magnetic entropy and of the adiabatic temperature for a several magnetic field have been obtained. The field dependence of relative cooling power (RCP) of SrFe12O19 ceramic has been determined for a several magnetic fields. The magnetic hysteresis cycle of SrFe12O19 ceramic has been obtained for a several temperatures. The obtained values are close to the experimental values. The transition paramagnetic to ferromagnetic is found at the Curie temperature. The second phase transition is also obtained around the Curie temperature.

Keywords

SrFe12O19 ceramic Monte Carlo simulation Magnetocaloric effect Magnetic hysteresis cycle 

References

  1. 1.
    Pullar, R.C.: Prog. Mater. Sci. 57, 1191 (2012)CrossRefGoogle Scholar
  2. 2.
    Ikeno, H.: Physica B 532, 20 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    Fang, C.M., Kools, F., Metselaar, R., With, G.D., Groot, R.A.D.: J. Phys. Condens. Matter 15, 6229–6237 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    Guo, Z.-B., Ding, W.-P., Zhong, W., Zhang, J.-R., Du, Y.-W.: J. Magn. Magn. Mater. 175, 333–336 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    Harikrishnan, V., Saravanan, P., Ezhil Vizhi, R., Rajan Babu, D., Vinod, V.T.P., Kejzlar, P., Černík, M.: J. Magn. Magn. Mater. 401, 775–783 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Molinari, F., Maignan, A., Marinel, S., Savary, E.: Ceram. Int. 43, 4229–4234 (2017)CrossRefGoogle Scholar
  7. 7.
    Zi, Z.F., Sun, Y.P., Zhu, X.B., Yang, Z.R., Dai, J.M., Song, W.H.: J. Magn. Magn. Mater. 320, 2746–2751 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Kimura, K., Ohgaki, M., Tanaka, K., Morikawa, H., Marumo, F.: J. Solid State Chem. 87, 186 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    Shirk, B.T., Buessem, W.R.: J. Appl. Phys. 40, 1294 (1969)ADSCrossRefGoogle Scholar
  10. 10.
    Park, J., Hong, Y.-K., Kim, S.-G., Kim, S., Liyanage, L.S.I., Lee, J., Lee, W., Abo, G.S., Hur, K.-H., An, S.-Y.: J. Magn. Magn. Mater. 355, 1–6 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Álvarez, P., Gorria, P., Sánchez Llamazares, J.L., Pérez, M.J., Franco, V., Reiffers, M., Kovác, J., Puente-Orench, I., Blanco, J.A.: Mater. Chem. Phys. 131, 18–22 (2011)CrossRefGoogle Scholar
  12. 12.
    Tartaj, P., Gonzalez-Carreno, T., Bomat-Miguel, O., Serna, C.J.: Phys. Rev. B 69, 094401 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. Jabar
    • 1
  • R. Masrour
    • 1
  • O. Mounkachi
    • 2
  • H. El Moussaoui
    • 2
  • M. Hamedoun
    • 2
  • A. Benyoussef
    • 2
    • 3
  • E. K. Hlil
    • 4
  1. 1.Laboratory of Materials, Processes, Environment and Quality, National School of Applied SciencesCadi Ayyed UniversitySafiMorocco
  2. 2.MAScIRInstitute of Nanomaterials and NanotechnologiesRabatMorocco
  3. 3.Hassan II Academy of Science and TechnologyRabatMorocco
  4. 4.CNRS, Institut NéelUniversité Grenoble AlpesGrenoble cedex 9France

Personalised recommendations