Skip to main content
Log in

Bacterial Ferrihydrite Nanoparticles: Preparation, Magnetic Properties, and Application in Medicine

  • Review Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Nanoparticles of antiferromagnetically ordered materials acquire the uncompensated magnetic moment caused by defects and surface effects. A bright example of such a nano-antiferromagnet is nanoferrihydrite consisting of particles 2–5 nm in size, the magnetic moment of which amounts to hundreds of Bohr magnetons per particle. We present a brief review of the studies on magnetic properties of ferrihydrite produced by bacteria. Special attention is focused on the aspects of possible biomedical applications of this material, i.e., the particle elimination, toxicity, and possible use for targeted drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nogués, J., Sort, J., Langlais, V., Skumryev, V., Suriñach, S., Muñoz, J. S., Baró, M.D.: Exchange bias in nanostructures. Phys. Rep. 422, 65–117 (2005)

    Article  ADS  Google Scholar 

  2. Mørup, S., Madsen, D.E., Frandsen, C., Bahl, C.R.H., Hansen, M.F.: Experimental and theoretical studies of nanoparticles of antiferromagnetic materials. J. Phys. Condens. Matter. 19, 213202 (2007)

    Article  ADS  Google Scholar 

  3. Kodama, R.H., Berkowitz, A.E.: Atomic-scale magnetic modeling of oxide nanoparticles. Phys. Rev. B. 59, 6321–6336 (1999)

    Article  ADS  Google Scholar 

  4. Millan, A., Urtizberea, A., Silva, N.J.O., Palacio, F., Amaral, V.S., Snoeck, E., Serin, V.: Surface effects in maghemite nanoparticles. J. Magn. Magn. Mater. 312, L5–L9 (2007)

    Article  ADS  Google Scholar 

  5. Kirillov, V.L., Balaev, D.A., Semenov, S.V., Shaikhutdinov, K.A., Martyanov, O.N.: Size control in the formation of magnetite nanoparticles in the presence of citrate ions. Mater. Chem. Phys. 145, 75–81 (2014)

    Article  Google Scholar 

  6. Néel, L., Acad, C.R.: Sci. Paris. 252, 4075 (1961)

    Google Scholar 

  7. Makhlouf, S.A., Parker, F.T., Berkowitz, A.E.: Magnetic hysteresis anomalies in ferritin. Phys. Rev. B. 55, R14717–R14720 (1997)

    Article  ADS  Google Scholar 

  8. Seehra, M.S., Babu, V.S., Manivannan, A., Lynn, J.W.: Neutron scattering and magnetic studies of ferrihydrite nanoparticles. Phys. Rev. B. 61, 3513–3518 (2000)

    Article  ADS  Google Scholar 

  9. Punnoose, A., Phanthavady, T., Seehra, M.S., Shah, N., Huffman, G.P.: Magnetic properties of ferrihydrite nanoparticles doped with Ni, Mo, and Ir. Phys. Rev. B. 69, 054425 (2004)

    Article  ADS  Google Scholar 

  10. Gilles, C., Bonville, P., Rakoto, H., Broto, J.M., Wong, K.K.W., Mann, S.: Magnetic hysteresis and superantiferromagnetism in ferritin nanoparticles. J. Magn. Magn. Mater. 241, 430–440 (2002)

    Article  ADS  Google Scholar 

  11. Lepeshev, A.A., Karpov, I.V., Ushakov, A.V., Balaev, D.A., Krasikov, A.A., Dubrovskiy, A.A., Velikanov, D.A., Petrov, M.I.: Particularities of the magnetic state of CuO nanoparticles produced by low-pressure plasma arc discharge. J. Supercond. Nov. Magn. 30, 931–936 (2017)

    Article  Google Scholar 

  12. Balaev, D.A., Dubrovskii, A.A., Krasikov, A.A., Stolyar, S.V., Iskhakov, R.S., Ladygina, V.P., Khilazheva, E.D.: Mechanism of the formation of an uncompensated magnetic moment in bacterial ferrihydrite nanoparticles. JETP Lett. 98, 139–142 (2013)

    Article  ADS  Google Scholar 

  13. Balaev, D.A., Krasikov, A.A., Dubrovskii, A.A., Semenov, S.V., Bayukov, O.A., Stolyar, S.V., Iskhakov, R.S., Ladygina, V.P., Ishchenko, L.A.: Magnetic properties and the mechanism of formation of the uncompensated magnetic moment of antiferromagnetic ferrihydrite nanoparticles of a bacterial origin. J. Exp. Theor. Phys. 119, 479–487 (2014)

    Article  Google Scholar 

  14. Silva, N.J.O., Amaral, V.S., Urtizberea, A., Bustamante, R., Millán, A., Palacio, F., Kampert, E., Zeitler, U., de Brion, S., Iglesias, Ò., Labarta, A.: Shifted loops and coercivity from field-imprinted high-energy barriers in ferritin and ferrihydrite nanoparticles. Phys. Rev. B. 84, 104427 (2011)

    Article  ADS  Google Scholar 

  15. Silva, N.J.O., Amaral, V.S., Carlos, L.D.: Relevance of magnetic moment distribution and scaling law methods to study the magnetic behavior of antiferromagnetic nanoparticles: application to ferritin. Phys. Rev. B. 71, 184408 (2005)

    Article  ADS  Google Scholar 

  16. Michel, F.M., Ehm, L., Antao, S.M., Lee, P.L., Chupas, P.J., Liu, G., Strongin, D.R., Schoonen, M.A.A., Phillips, B.L., Parise, J.B.: The structure of ferrihydrite, a nanocrystalline material. Science 316, 1726–1729 (2007)

    Article  ADS  Google Scholar 

  17. Stolyar, S.V., Yaroslavtsev, R.N., Iskhakov, R.S., Bayukov, O.A., Balaev, D.A., Dubrovskii, A.A., Krasikov, A.A., Ladygina, V.P., Vorotynov, A.M., Volochaev, M.N.: Magnetic and resonance properties of ferrihydrite nanoparticles doped with cobalt. Phys. Solid State 59, 555–563 (2017)

    Article  ADS  Google Scholar 

  18. Stolyar, S.V., Bayukov, O.A., Gurevich, Y.L., Ladygina, V.P., Iskhakov, R.S., Pustoshilov, P.P.: Mössbauer study of bacterial ferrihydrite. Inorg. Mater. 43, 638–641 (2007)

    Article  Google Scholar 

  19. Raikher, Y.L., Stepanov, V.I., Stolyar, S.V., Ladygina, V.P., Balaev, D.A., Ishchenko, L.A., Balasoiu, M.: Magnetic properties of biomineral particles produced by bacteria Klebsiella oxytoca. Phys. Solid State 52, 298–305 (2010)

    Article  ADS  Google Scholar 

  20. Balaev, D.A., Krasikov, A.A., Dubrovskiy, A.A., Popkov, S.I., Stolyar, S.V., Bayukov, O.A., Iskhakov, R.S., Ladygina, V.P., Yaroslavtsev, R.N.: Magnetic properties of heat treated bacterial ferrihydrite nanoparticles. J. Magn. Magn. Mater. 410, 171–180 (2016)

    Article  ADS  Google Scholar 

  21. Balaev, D.A., Krasikov, A.A., Stolyar, S.V., Iskhakov, R.S., Ladygina, V.P., Yaroslavtsev, R.N., Bayukov, O.A., Vorotynov, A.M., Volochaev, M.N., Dubrovskiy, A.A.: Change in the magnetic properties of nanoferrihydrite with an increase in the volume of nanoparticles during low-temperature annealing. Phys. Solid State 58, 1782–1791 (2016)

    Article  ADS  Google Scholar 

  22. Stolyar, S.V., Bayukov, O.A., Ladygina, V.P., Iskhakov, R.S., Ishchenko, L.A., Yakovchuk, V.Y., Dobretsov, K.G., Pozdnyakov, A.I., Piksina, O.E.: Mössbauer investigation of temperature transformations in bacterial ferrihydrite. Phys. Solid State 53, 100–104 (2011)

    Article  ADS  Google Scholar 

  23. Stolyar, S.V., Balaev, D.A., Krasikov, A.A., Dubrovskiy, A.A., Yaroslavtsev, R.N., Bayukov, O.A., Volochaev, M.N., Iskhakov, R.S.: Modification of the structure and magnetic properties of cobalt-doped ferrihydrite nanoparticles under heat treatment. J. Supercond. Nov. Magn. 31, 1133–1138 (2018)

    Article  Google Scholar 

  24. Stoner, E.C., Wohlfarth, E.P.: A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 240, 599–642 (1948)

    Article  ADS  MATH  Google Scholar 

  25. Balaev, D.A., Krasikov, A.A., Dubrovskiy, A.A., Popkov, S.I., Stolyar, S.V., Iskhakov, R.S., Ladygina, V.P., Yaroslavtsev, R.N.: Exchange bias in nano-ferrihydrite. J. Appl. Phys. 120, 183903 (2016)

    Article  ADS  Google Scholar 

  26. Tüysüz, H., Salabaş, E. L., Weidenthaler, C., Schüth, F.: Synthesis and magnetic investigation of ordered mesoporous two-line ferrihydrite. J. Am. Chem. Soc. 130, 280–287 (2008)

    Article  Google Scholar 

  27. Bi, H., Li, S., Zhang, Y., Du, Y.: Ferromagnetic-like behavior of ultrafine NiO nanocrystallites. J. Magn. Magn. Mater. 277, 363–367 (2004)

    Article  ADS  Google Scholar 

  28. Makhlouf, S.A., Parker, F.T., Spada, F.E., Berkowitz, A.E.: Magnetic anomalies in NiO nanoparticles. J. Appl. Phys. 81, 5561 (1997)

    Article  ADS  Google Scholar 

  29. Makhlouf, S.A., Al-Attar, H., Kodama, R.H.: Particle size and temperature dependence of exchange bias in NiO nanoparticles. Solid State Commun. 145, 1–4 (2008)

    Article  ADS  Google Scholar 

  30. Seehra, M.S., Punnoose, A.: Particle size dependence of exchange-bias and coercivity in CuO nanoparticles. Solid State Commun. 128, 299–302 (2003)

    Article  ADS  Google Scholar 

  31. Díaz-Guerra, C., Vila, M., Piqueras, J.: Exchange bias in single-crystalline CuO nanowires. Appl. Phys. Lett. 96, 193105 (2010)

    Article  ADS  Google Scholar 

  32. Punnoose, A., Seehra, M.S.: Hysteresis anomalies and exchange bias in 6.6 nm CuO nanoparticles. J. Appl. Phys. 91, 7766 (2002)

    Article  ADS  Google Scholar 

  33. Punnoose, A., Magnone, H., Seehra, M.S., Bonevich, J.: Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles. Phys. Rev. B. 64, 174420 (2001)

    Article  ADS  Google Scholar 

  34. Cooper, J.F.K., Ionescu, A., Langford, R.M., Ziebeck, K.R.A., Barnes, C.H.W., Gruar, R., Tighe, C., Darr, J.A., Thanh, N.T.K., Ouladdiaf, B.: Core/shell magnetism in NiO nanoparticles. J. Appl. Phys. 114, 083906 (2013)

    Article  ADS  Google Scholar 

  35. Bianchi, A.E., Stewart, S.J., Zysler, R.D., Punte, G.: Magnetic hardness features and loop shift in nanostructured CuO. J. Appl. Phys. 112, 083904 (2012)

    Article  ADS  Google Scholar 

  36. Bulte, J.W.M., Kraitchman, D.L.: Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 17, 484–499 (2004)

    Article  Google Scholar 

  37. Inzhevatkin, E.V., Morozov, E.V., Khilazheva, E.D., Ladygina, V.P., Stolyar, S.V., Falaleev, O.V.: Elimination of iron-containing magnetic nanoparticles from the site of injection in mice: a magnetic-resonance imaging study. Bull. Exp. Biol. Med. 158, 807–811 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The electron microscopy examination was carried out at the Center for Collective Use of the Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences (Krasnoyarsk, Russia).

Funding

The reported study was funded by the Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Region Science and Technology Support Fund to the research projects (nos. 17-42-240138 and 17-43-240527). The work is supported by the Special Program of the Ministry of Education and Science of the Russian Federation for the Siberian Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Yaroslavtsev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolyar, S.V., Balaev, D.A., Ladygina, V.P. et al. Bacterial Ferrihydrite Nanoparticles: Preparation, Magnetic Properties, and Application in Medicine. J Supercond Nov Magn 31, 2297–2304 (2018). https://doi.org/10.1007/s10948-018-4700-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4700-1

Keywords

Navigation