Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 12, pp 3889–3898 | Cite as

Comparing the Effects of Nb, Pb, Y, and La Replacement on the Structural, Electrical, and Magnetic Characteristics of Bi-Based Superconductors

  • Reza AsghariEmail author
  • Hamid Naghshara
  • Leyla Çolakerol Arsalan
  • Hasan Sedghi
Original Paper


In this study, the effects of Pb, Nb, La, and Y replacements were investigated on Bi-based superconducting materials. In preparing the samples, we used a method called solid-state reaction method. The patterns of the X-ray diffraction of all samples indicated presence of Bi-2212 and Bi-2223 phases. The results obtained from XRD revealed that with increase of the melting point of substation elements, the Bi-2223 phase decreased while the Bi-2212 phase and impurity phases of samples grew. From the electrical resistivity measurements using the four-probe method, it was found that sample A with Pb and sample B with La replacements had the maximum and minimum critical temperatures of 111.4 and 81.6 K, respectively. Based on hysteresis loop (M–H) measurement using Bean’s model, estimation of critical current density (Jc) showed that sample A with Pb and sample B with La substitution had the maximum and minimum values respectively. These results may be due to the melting point of these elements with values of 888, 1512, 2315, and 2425 C for PbO, Nb2O5, La2O3, and Y2O3, respectively. These elements were replaced by Bi2O3 with a melting point of 817 C. Further, the samples were prepared at the temperature of 845 C. It seems at this temperature, these elements not only dissolve within the main matrix and participate in the formation of the Bi-2212 phase during the sintering process but they also participate in the development of the variety of the impurity phases as confirmed by XRD results.


Bi-based superconductors Volume fraction Critical temperature Four-point probe method Lattice parameters p parameter 



The authors would like to express their appreciation to Professor Ali Gencer, Center of Excellence for Superconductivity Research, Ankara University Turkey and Dr. Ramin Shiri, Iran Atomic Energy Organization, for their helpful guidance.


  1. 1.
    Maeda, H., Tanaka, Y., Fukutomi, M., Asano, T.: Jpn. J. Appl. Phys. 27, L209 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    Abbasi, H., Taghipour, J., Sedghi, H.: J. Alloys Compd. 494, 305–308 (2010)CrossRefGoogle Scholar
  3. 3.
    Özçelik, B., Kaya, C., Gündoğmuş, H., Sotelo, A., Madre, M.A.: J. Low Temp. Phys. 174, 136–147 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Türk, N., Gündoğmuş, H., Akyol, M., Yakıncı, Z.D., Ekicibil, A., Özçelik, B.: J. Supercond. Nov. Magn. 27, 711–716 (2014)CrossRefGoogle Scholar
  5. 5.
    Özaslan, A., Özçelik, B., Özkurt, B., Sotelo, A., Madre, M.A.: J. Supercond. Nov. Magn. 27, 53–59 (2014)CrossRefGoogle Scholar
  6. 6.
    Gündoğmuş, H., Özçelik, B., Sotelo, A, Madre, M.A.: J. Mater. Sci: Mater. Electron. 24, 2568–2575 (2013)Google Scholar
  7. 7.
    Özçelik, B., Özkurt, B., Yakıncı, M.E., Sotelo, A., Madre, M.A.: J. Supercond. Nov. Magn. 26, 873–878 (2013)CrossRefGoogle Scholar
  8. 8.
    Yazıcı, D., Özçelik, B., Yakıncı, M. E.: J. Low Temp. Phys. 163, 370–379 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Abou-Aly, A. I., Abdel Gawad, M. M. H., G-Eldeen, I.: J. Supercond. Nov. Magn. 24, 2077 (2011)CrossRefGoogle Scholar
  10. 10.
    Abbasi, H., Taghipour, J., Sedghi, H.: J. Alloys Compd. 482, 552–555 (2009)CrossRefGoogle Scholar
  11. 11.
    Gao, L., Huang, J.C., Meng, L.R., Hor, H.P., Bechtold, J., Sun, Y.Y., Chu, W.C., Sheng, Z.Z., Herman, M.A.: Nature 332, 623 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    Chu, W. C., Bechtold, J., Gao, L., Hor, H.P., Huang, J.C., Meng, L.R., Sun, Y.Y., Wang, Y.Q., Zue, Y.Y.: Phys. Rev. Lett. 60, 941 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    Tallon, L.J., Buckley, G.R., Gilbert, W.P., Presland, R.M., Brown, M.W.I., Bowder, E.M., Christian, A.L., Gafull, R.: Nature 333, 153–156 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    Smrčková, O., Sýkorová, D., Vašek, P.: J. Superconduct.: Incorporating Novel Magnetism 13(4), 899–901 (2000)CrossRefGoogle Scholar
  15. 15.
    Zhigadlo, N. D., Petrashko, V. V., Saemenenko, Yu. A., Panagopoulus, C., Cooper, J. R., Salje, E. K. H.: Phys. C Supercond. 299(3–4), 327–337 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    Gul, I. H., Anis-ur-Rehman, M., Magsood, A.: Phys. C Supercond. 450(1–2), 83–87 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Hudakova, N., Plechacek, V., Dordor, P., Flachbart, K., Knizek, K., Kovac, J., Reiffers, M.: Supercond. Sci. Technol. 8, 324–328 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    Li, Y., Yang, B.: J. Mater. Sci. Lett. 13(8), 594–596 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    Ghazanfari, N., Kiliç, A., Gencer, A., Özkan, H.: Solid State Commun. 144(5–6), 210–214 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Ekicibil, A., Coşkun, A., Özçelik, B., Kiymac, K.: J. Low Temp. Phys. 140(1–2), 105–117 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    Asghari, R, Arsalan, L Ç, Sedghi, H, Naghshara, H: Synthesis and characterization of Nb substitution on (Bi-Pb)-2223 superconductors. J. Low Temp. Phys. 189(1–2), 15–26 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    Asghari, R, Sedghi, H, Arsalan, L.Ç., Naghshara H: Investigation of niobium (Nb) substitution on structural and superconducting properties of (Bi, Pb)-based superconductors. Adv. Mater. Phys. Chem. 7(7), 277–293 (2017)CrossRefGoogle Scholar
  23. 23.
    Ismail, M., Abd-Shukor, R., Hamadneh, I., Halim, S.A.: J. Mater. Sci. 39(10), 3517 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Özçelik, B., Gündoğmuş, H., Yazıcı, D.: J. Mater. Sci.: Mater. Electron. 25, 2456–2462 (2014)Google Scholar
  25. 25.
    Türk, N., Gündoğmuş, H., Akyol, M., Yakıncı, Z. D., Ekicibil, A, Özçelik, B.: J. Supercond. Nov. Magn. 27, 711–716 (2014)CrossRefGoogle Scholar
  26. 26.
    Chiu, C.W., Meng, R.L., Gao, L., Huang, Z.J., Chen, F., Xue, Y.Y.: Nature 365, 323–325 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    Driessche, I.V., Buekenhoudt, A., Konstantinov, K., Brueneel, E., Hoste, S.: Appl. Supercond. 4, 185–190 (1996)CrossRefGoogle Scholar
  28. 28.
    Bean, C. P.: Rev. Mod. Phys. 36, 31 (1964)ADSCrossRefGoogle Scholar
  29. 29.
    Ibrahim, M. M., Khalil, S. M., Ahmed, A.M.: J. Phys. Chem. Sol. 61(10), 1553–1560 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    Bahadur, D., Banerjee, A., Das, A., Gupta, K. P., Mitra, A., Tewari, M., Majumdar, A. K.: J. Mater. Sci. 25(11), 4852–485D (1991)ADSCrossRefGoogle Scholar
  31. 31.
    Tampieri, A., Celotti, G., Guicciardi, S., Melandri, C.: Mater. Chem. Phys. 42(3), 188–194 (1995)CrossRefGoogle Scholar
  32. 32.
    Presland, M. R., Tallon, J. L., Buckley, R. G., Liu, R. S., Floer, N. E.: Physica C 176(1–3), 95–105 (1991)ADSCrossRefGoogle Scholar
  33. 33.
    Obertelli, S. D., Cooper, J. R., Tallon, J. L.: Phys. Rev. B 46, 14928–14931 (1992)ADSCrossRefGoogle Scholar
  34. 34.
    Sita, D. R., Singh, R.: Physica C 296(1–2), 21–28 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    Zhao, Z. W., Li, S. L., Won, H. H., Li, X. G.: Physica C 391(2), 169–177 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Condensed Matter, Faculty of PhysicsUniversity of TabrizTabrizIran
  2. 2.Department of Physics, Superconductivity Research CenterUniversity of UrmiaUrmiaIran
  3. 3.Department of PhysicsGebze Technical UniversityCayirovaTurkey

Personalised recommendations