Enhancing the Structural and Spectroscopic Properties of Cr3+ Ion-Doped Ni/Cd/Zn Nanoferrite To Be Applied To Industrial Applications

Original Paper
  • 8 Downloads

Abstract

Nanocrystalline Cr-doped Ni/Cd/Zn of general formula Ni0.7Cd0.1Zn0.2Cr x Fe2−xO4 (x\(=\) 0, 0.1, 0.3, 0.5, 0.7, 1) were synthesized by coprecipitation method. X-ray analysis (XRD) confirmed that the samples had a single-phase cubic spinel structure. The morphology was studied using field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) to assure that the samples were in the nanoscale range. Spectroscopic analysis was carried out using UV-VIS-NIR spectroscopy for all samples. One can conclude that Ni0.7Cd0.1Zn0.2Cr0.5Fe1.5O4 had the most suitable energy bandgap that could be applied to the visible light region and many industrial applications. Moreover, this sample (Ni0.7Cd0.1Zn0.2Cr0.5Fe1.5O4) played an important role in the improvement of photocatalytic efficiency.

Keywords

XRD FESEM AFM Spectroscopic properties 

References

  1. 1.
    Krishna, K.R., Ravinder, D., Kumar, K.V., Lincon, C.A.: World J. Condens. Matter Phys. 2(3), 153 (2012).  https://doi.org/10.4236/wjcmp.2012.23025 ADSCrossRefGoogle Scholar
  2. 2.
    Ahmed, Y.M.Z.: Ceram. Int. 36, 969 (2010)CrossRefGoogle Scholar
  3. 3.
    Deraz, N.M.: J. Alloys Compd. 501, 317–325 (2010)CrossRefGoogle Scholar
  4. 4.
    Gabal, M.A., Al Angari, Y.M.: J. Magn. Magn. Mater. 322, 3159 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Pant, P., Vadera, S.R., Patra, M.K., Ghosh, N.N.: Powder Technol. 203, 348 (2010)CrossRefGoogle Scholar
  6. 6.
    Peng, C.H., Wang, H.W., Kan, S.W., Shen, M.Z., Wei, Y.M., Chen, S.Y.: J. Magn. Magn. Mater. 284, 113 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Maklad, M.H., Shash, N.M., Abdelsalam, H.K.: Int. J. Modern Phys. B 28(25), 1450165 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Maklad, M.H., Shash, N.M., Abdelsalam, H.K.: Eur. Phys. J. Appl. Phys. 66, 30402 (2014)CrossRefGoogle Scholar
  9. 9.
    Shenoy, S.D., Joy, P.A., Anantharaman, M.R.: J. Magn. Magn. Mater. 269, 217 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Klung, H., Alexander, L.: X-Ray Diffraction Procedures, p. 491. Wiley, New York (1962). EUAGoogle Scholar
  11. 11.
    Ma, X., Sun, H., He, H., Zheng, M.: Catal. Lett. 119(1–2), 142–147 (2007)CrossRefGoogle Scholar
  12. 12.
    Zhao, X., Wang, W., Zhang, Y.J., Wu, S., Li, F., Ping Liu, J.: J. Chem. Eng. 250, 164–174 (2014)CrossRefGoogle Scholar
  13. 13.
    El-Bassuony, A.A.: Enhancement of structural and electrical properties of novelty nanoferrite materials. J. Mater. Sci. Mater. Electron. 28, 14489–14498 (2017).  https://doi.org/10.1007/s10854-017-7312-9 CrossRefGoogle Scholar
  14. 14.
    Huheey, J.F., Keiter, E.A.: Chemistry Principles of Structure and Reactivity. College Publishers, Harper Collins (1993)Google Scholar
  15. 15.
    El-Bassuony, A.A.H.: Tuning the structural and magnetic properties on Cu/Cr nanoferrite using different rare-earth ions. J. Mater. Sci. Mater. Electron. 29, 3259–3269 (2017).  https://doi.org/10.1007/s10854-017-8261-z CrossRefGoogle Scholar
  16. 16.
    Kimura, S., Mashino, T., Hiroki, T., Shigeoka, D., Sakai, N., Zhu, L., Ichiyanagi, Y.: Thermochim. Acta 532, 119 (2012)CrossRefGoogle Scholar
  17. 17.
    El-Bassuony, A.A.: A comparative study of physical properties of Er and Yb nanophase ferrite for industrial application. J. Supercond. Nov. Magn. (2018).  https://doi.org/10.1007/s10948-017-4543-1
  18. 18.
    Zhu, S., Marschilok, A.C., Lee, C.-Y., Takeuchi, E.S., Takeuchi, K.J.: Electrochem. Solid-State Lett. 13, A98 (2010)CrossRefGoogle Scholar
  19. 19.
    El-Bassuony, A.A.H., Abdelsalam, H.K.: Giant exchange bias of hysteresis loops on Cr3 + -doped Ag nanoparticles. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4340-x
  20. 20.
    Srivastava, M., Ojha, A.K., Chaubey, S., Materny, A.: J. Alloys Compd. 481(1–2), 515–519 (2009)CrossRefGoogle Scholar
  21. 21.
    Hemeda, O.M.: J. Magn. Magn. Mater. 281, 36 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Lin, K.F., Cheng, H.M., Hsu, H.C., Lin, L.I.J., Hsieh, W.F.: Chem. Phys. Lett. 409(4–6), 208–211 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    Polezhaeva, O.S., Yaroshinskaya, N.V., Ivanov, V.K.: Rus. J. Inorg. Chem. 52(8), 1184–1188 (2007)CrossRefGoogle Scholar
  24. 24.
    El-Bassuony, A.A.H., Abdelsalam, H.K.: Attractive improvement in structural, magnetic, optical, and antimicrobial activity of silver delafossite by Fe/Cr doping. J. Supercond. Nov. Magn. (2018).  https://doi.org/10.1007/s10948-018-4627-6
  25. 25.
    Gao, D., Shi, Z., Xu, Y., Zhang, J., Yang, G., Zhang, J., Wang, X., Xue, D.: Nanoscale Res. Lett. 5, 1289 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Sultan, M., Singh, R.: J. Appl. Phys 105, 07A512 (2009)CrossRefGoogle Scholar
  27. 27.
    El-Bassuony, A.A.H., Abdelsalam, H.K.: Enhancement of AgCrO2 by double nanometric delafossite to be applied in many technological applications. J. Mater. Sci. Mater. Electron. (2018).  https://doi.org/10.1007/s10854-017-8506-x
  28. 28.
    Joshi, G.P., Saxena, N.S., Mangal, R., Mishra, A., Sharma, T.P.: Bull. Mater. Sci. 26, 387–389 (2003)CrossRefGoogle Scholar
  29. 29.
    Liu, Y., Gong, Y., Mellott, N.P., Wang, B., Ye, H., Wu, Y.: Sci. Technol. Adv. Mater. 17, 200–209 (2016)CrossRefGoogle Scholar
  30. 30.
    El-Bassuony, A.A.H., Abdelsalam, H.K.: Modification of AgFeO2 by double nanometric delafossite to be suitable as energy storage in solar cell. J. Alloys Compd. 726(2017), 1106–1118 (2017).  https://doi.org/10.1016/j.jallcom.2017.08.087 CrossRefGoogle Scholar
  31. 31.
    Tholkappiyan, R., Hamed, F., Vishista, K.: Adv. Mater. Lett. Adv. Mater. Lett. 7, 100–150 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics DepartmentHigher Institute of Engineering, New Cairo AcademyNew CairoEgypt

Personalised recommendations