Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 2, pp 385–392 | Cite as

The Distinctly Enhanced Electromagnetic Wave Absorption Properties of FeNi/rGO Nanocomposites Compared with Pure FeNi Alloys

  • An Dong
  • Zhang ZhiyiEmail author
  • Wang Yanhui
  • Cheng Shuaishuai
  • Liu YaqingEmail author
Original Paper


FeNi/rGO nanocomposites were successfully synthesized by a facile one-pot method and demonstrated via powder X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy, and the scanning electron microscope. The electromagnetic wave absorption properties of the FeNi/rGO nanocomposites exhibit enhanced properties and wide absorption bandwidth compared with that of FeNi alloys. The minimum reflection loss of FeNi/rGO nanocomposites with a thickness of 3.0 mm can reach − 39.86 dB at 11.12 GHz, and the absorption bandwidth is up to 4 GHz. It is believed that the FeNi/rGO nanocomposites can be a best candidate for excellent electromagnetic wave-absorbing materials and widely used in practice.


Graphene oxide FeNi alloys Nanocomposites Electromagnetic wave-absorbing materials 


  1. 1.
    Ding, X., Huang, Y., Li, S.P., Zhang, N., Wang, J.G.: J. Alloys Compd. 689, 208–217 (2016)CrossRefGoogle Scholar
  2. 2.
    Zhang, L.L., Dai, P., Yu, X.X., Li, Y., Bao, Z.W., Zhu, J., Zhu, K.R., Wu, M.Z., Liu, X.S., Li, G., Bi, H.: Appl. Surf. Sci. 359, 723–728 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    Hong, J., Lee, S.: Curr. Appl Phys. 17, 1571–1575 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Liu, Q., Cao, Q., Zhao, X.B., Bi, H., Wang, C., Wu, D.S.: ACS Appl. Mater. 7, 4233–4240 (2015)CrossRefGoogle Scholar
  5. 5.
    Wen, S.L, Yao, C, Wang, D.L, Dong, C.H, Zhang, X.P, Ma, Y.W, Awaji, S, Watanabe, K.: J. Supercond. Nov. Magn 30, 463–468 (2017)CrossRefGoogle Scholar
  6. 6.
    Zhong, B., Sai, T.Q., Xia, L., Yu, Y.L., Wen, G.W.: Mater. Des. 121, 185–193 (2017)CrossRefGoogle Scholar
  7. 7.
    Huang, X., Lu, M., Zhang, X., Wen, G., Zhou, Y., Fei, L.: Scr. Mater. 67, 613–616 (2012)CrossRefGoogle Scholar
  8. 8.
    Zhang, H.M., Zhu, C.L., Chen, Y.J., Gao, H.: Chem-PhysChem. 15, 2261–2266 (2014)Google Scholar
  9. 9.
    Lu, B., Dong, X.L., Huang, H., Zhang, X.F., Zhu, X.G., Lei, J.P., Sun, J.P.: J. Mag. Mag. Mater. 320, 1106–1111 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Huang, X., Yan, X., Xia, L., Wang, P., Wang, Q., Zhang, X., Zhong, B., Zhao, H., Wen, G.: Scr. Mater. 120, 107–111 (2016)CrossRefGoogle Scholar
  11. 11.
    Chen, Z.P., Xu, C., Ma, C.Q., Ren, W.C., Cheng, H.M.: Adv. Mater. 25, 1296–1300 (2013)CrossRefGoogle Scholar
  12. 12.
    Wang, C., Han, X.J., Xu, P., Zhang, X.L., Du, Y.C., Hu, S.R.: Appl. Phys. Lett. 98, 217–219 (2011)Google Scholar
  13. 13.
    Qiang, R., Du, Y.C., Zhao, H.T., Wang, Y., Tian, C.H., Li, Z.G., Han, X.J., Xu, P.: J. Mater. Chem. A 3, 13426–13434 (2015)CrossRefGoogle Scholar
  14. 14.
    Wen, B., Wang, X.X., Cao, W.Q., Shi, H.L., Lu, M.M., Wang, G.: Nanoscale. 6, 5754–5761 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Cao, W.Q., Wang, X.X., Yuan, J., Wang, W.Z., Cao, M.S.: J. Mater. Chem. C 3, 10017–10022 (2015)CrossRefGoogle Scholar
  16. 16.
    Wang, W., Guo, J., Long, C., Li, W., Guan, J.: J. Alloys Compd. 637, 106–111 (2015)CrossRefGoogle Scholar
  17. 17.
    Kang, Y.Q., Cao, M.S., Yuan, J., Zhang, L., Wen, B., Fang, X.Y.: J. Alloys Compd. 495, 254–259 (2010)CrossRefGoogle Scholar
  18. 18.
    Zeng, X.J., Yang, B., Yang, H.Z., Zhu, L.Y., Yu, R.H.: AIP Adv. 7, 056605 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Li, N.W., Zheng, M.B., Chang, X.F., Jin, G.B., Lu, H.L., Xue, L.P., Pan, J., Cao, J.M.: J. Solid State Chem. 184, 953–958 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Liang, J.J., Xu, Y.F., Sui, D., Zhang, L., Huang, Y., Ma, Y.F., Li, F.F., Chen, Y.S.: J. Phys. Chem. C 113, 9921–9927 (2009)CrossRefGoogle Scholar
  21. 21.
    Jazirehpour, M., Seyyed Ebrahimi, S.A.: J. Alloys Compd. 638, 188–196 (2015)CrossRefGoogle Scholar
  22. 22.
    Chen, W., Yan, L., Bangal, P.R.: J. Phys. Chem. C 114, 19885–19890 (2010)CrossRefGoogle Scholar
  23. 23.
    Stankovich, S., Dikin, D.A., Piner, R.D.: Carbon. 45, 1558–1565 (2007)CrossRefGoogle Scholar
  24. 24.
    Wang, C., Han, X.J., Xu, P., Zhang, X.L., Du, Y.C., Hu, S.R.: Appl. Phys. Lett. 98, 072906 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Cao, M.S., Yang, J., Song, W. L., Zhang, D.Q., Wen, B., Jin, H.B.: Appl. Mater. 4, 6949–6956 (2012)CrossRefGoogle Scholar
  26. 26.
    Yang, W., Fu, Y., Xia, A., Zhang, K., Wu, Z.: J. Alloys Compd. 518, 6–10 (2012)CrossRefGoogle Scholar
  27. 27.
    Chen, Y.J., Xiao, G., Wang, T.S., Ouyang, Q.Y., Qi, L.H., Ma, Y.: J. Phys. Chem. C 115, 13603–13608 (2011)CrossRefGoogle Scholar
  28. 28.
    Feng, J., Pu, F.Z., Li, Z.X., Hu, X.Y., Bai, J.T.: Carbon. 104, 214–225 (2016)CrossRefGoogle Scholar
  29. 29.
    Yan, S., Zhen, L., Xu, C., Jiang, J., Shao, W.: J. Phys. D. Appl. Phys. 43, 245003 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Liu, J., Feng, Y., Qiu, T.: J. Magn. Magn. Mater. 323, 3071–3076 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Li, X.H., Feng, J., Du, Y.P., Bai, J.T., Fan, H.M., Zhang, H.L., et al.: J. Mater. Chem. A 3, 5535–5546 (2015)CrossRefGoogle Scholar
  32. 32.
    Wu, H., Wu, G., Ren, Y.: J. Mater. Chem. C 3, 7677–7690 (2015)CrossRefGoogle Scholar
  33. 33.
    Wu, H.J., Wu, G.L., Ren, Y.Y., Yang, L., Wang, L.D., Li, X.H.: J. Mater. Chem. C 3, 7677–7690 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shanxi Key Laboratory of Nano Functional Composite MaterialsNorth University of ChinaTaiyuanChina

Personalised recommendations